期刊文献+

Encapsulation of docosahexaenoic acid (DHA) using self-assembling food-derived proteins for efficient biological functions

下载PDF
导出
摘要 Docosahexaenoic acid(DHA;22n-6)possesses multiple biological functions, including antioxidant activity and ameliorating hypertriglyceridemia. However, the application of DHA has been limited due to poor aqueous solubility and susceptible to oxidation. Here, ovalbumin(O), myosin(M), 7S soy globulin(S), and β-lactoglobulin(β), hydrolyzed by chymotrypsin, self-assembled into micelles, respectively. Adding incremental DHA to micelles caused endogenous fluorescence quenching of O, M, S, and β micelles, implying successful incorporation of DHA into hydrophobic cores of micelles(O(DHA), M(DHA), S(DHA), and β(DHA)). The results showed that micelles provided spatial stability and improved solubility, and stability against thermal and ultraviolet(UV)light for DHA. The uptake of DHA from M(DHA), β(DHA), O(DHA), and S(DHA)was 3.27-, 3.91-, 2.7-, and 3.95-fold higher, respectively, than that of DHA by Caco-2 cells. Encapsulation in micelles increased DHA aqueous solubility and uptake, which enhanced cellular endogenous antioxidant defense. Meanwhile, increased uptake of DHA was verified by HepG2 cells, and O, M, S, and β micelles were proven to increase DHA uptake to reduce lipid deposition. Our findings strongly support the possibility that O, M, S, and β micelles can be regarded as a carrier for loading DHA.
出处 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1861-1871,共11页 食品科学与人类健康(英文)
基金 supported by the National Natural Science Foundation of China (31871831) Shenyang Science and technology innovation platform project (21-103-0-14,21-104-0-28)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部