期刊文献+

基于改进A ^(*)算法的无人车路径规划研究 被引量:11

Research on Unmanned Vehicle Path Planning Based on Improved A^(*)Algorithm
下载PDF
导出
摘要 针对传统A^(*)算法应用无人车路径规划实用性低的问题,提出了一种改进A^(*)算法。首先,对障碍物膨胀,确保路径安全性;其次,在原算法基础上融合JPS搜索策略,对子节点跳跃搜索,减小内存占用提高搜索效率;最后,利用Floyd算法对规划出的路径进行平滑处理。为确定算法可行性,对算法进行仿真实验,实验结果表明改进A^(*)算法规划出的路径效率更高,不会与障碍物发生碰撞,拐点数量少,路径总转折角度小,与原算法相比具有较明显优势,适合用于无人车的路径规划。 Aiming at the low practicability of traditional A^(*)algorithm in unmanned vehicle path planning,an improved A^(*)algorithm was proposed.Firstly,obstacles were expanded to ensure the path safety.Then,based on the original algorithm,JPS search strategy is integrated to search child nodes by jumping,which reduces memory consumption and improves search efficiency.Finally,Floyd algorithm is used to smooth the planned path.In order to determine the feasibility of the algorithm,a simulation experiment is conducted on the algorithm.The experimental results show that the path planned by the improved A^(*)algorithm has higher efficiency,no collision with obstacles,less inflection points,and small total turning Angle of the path.Compared with the original algorithm,it has obvious advantages and is suitable for unmanned vehicle path planning.
作者 龚鹏 李文博 马庆升 胡为 GONG Peng;LI Wen-bo;MA Qing-sheng;HU Wei(School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China;School of Automation,Shenyang Aerospace University,Shenyang 110136,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第3期17-20,24,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 辽宁省教育厅科学研究项目(JYT2020074) 辽宁省人社厅百万人才工程项目(2020921030)。
关键词 无人车 A^(*)算法 跳点搜索策略 FLOYD算法 路径规划 unmanned vehicle A^(*)algorithm jump point search strategy Floyd algorithm path planning
  • 相关文献

参考文献7

二级参考文献67

共引文献328

同被引文献121

引证文献11

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部