期刊文献+

基于优化MCKD-VMD与互相关谱的轴承复合故障诊断 被引量:3

Compound Fault Diagnosis of Bearings Based on Optimized MCKD-VMD and Cross-correlation Spectrum
下载PDF
导出
摘要 针对强背景噪声下轴承复合故障诊断困难的问题,提出一种优化最大相关峭度解卷积(MCKD)和变分模态分解(VMD)并结合互相关谱的轴承复合故障诊断方法。首先,通过黏菌优化算法(SMA)优化MCKD的参数,实现故障信号解卷积及故障特征增强,完成复合故障特征分离;其次,对分离的解卷积信号进行互相关谱分析,对故障特征不明显的解卷积信号使用VMD进行降噪;最后,对降噪的解卷积信号进行互相关谱分析,进一步降低噪声的影响,提取故障特征完成故障诊断。仿真和实验结果表明,所提方法克服了仅使用MCKD或包络谱的缺点,能够有效降低噪声的影响,复合故障诊断效果较好。 Aiming at the difficulty of compound fault diagnosis of bearings under strong background noise,a compound fault diagnosis method of bearings was proposed,which optimized maximum correlation kurtosis deconvolution(MCKD)and variational mode decomposition(VMD)and combined with cross-correlation spectrum.Firstly,the parameters of MCKD were optimized by slime mould algorithm(SMA),and the fault signal deconvolution and fault feature enhancement were realized,and the compound fault feature separation was completed.Secondly,cross-correlation spectrum analysis was performed on the separated deconvolution signals,and VMD was used to reduce the noise of the deconvolution signals with no obvious fault characteristics.Finally,cross-correlation spectrum analysis is carried out on de-noised deconvolution signals to further reduce the influence of noise and extract fault features to complete fault diagnosis.Simulation and experimental results show that the proposed method overcomes the shortcoming of using only MCKD or envelope spectrum,can effectively reduce the influence of noise,and has good compound fault diagnosis effect.
作者 魏晓鹏 高丙朋 WEI Xiao-peng;GAO Bing-peng(School of Electrical Engineering,Xinjiang University,Urumqi 830017,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第3期78-81,共4页 Modular Machine Tool & Automatic Manufacturing Technique
关键词 最大相关峭度解卷积 变分模态分解 黏菌优化算法 互相关谱 复合故障诊断 maximum correlation kurtosis deconvolution variational mode decomposition slime mould algorithm cross-correlation spectrum compound fault diagnosis
  • 相关文献

参考文献9

二级参考文献76

共引文献321

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部