期刊文献+

MOEA/I_(CD):一种基于适应度指标I_(CD)的高维多目标进化算法

MOEA/I_(CD):A Many objective Evolutionary Algorithm Based on Fitness Index I_(CD)
下载PDF
导出
摘要 已有的基于参考点(参考向量)或标量化效用函数的多目标进化算法(Multi-Objective Evolutionary Algorithm,MOEA)在求解高维多目标优化问题(Many-objective Optimization Problems,MaOPs)时存在不足。基于此,本文提出一种动态度量解个体收敛性与多样性综合性能的适应度指标(Fitness indicator considering convergence and diversity of individual adaptively,I_(CD)),该指标随进化过程的推进而自适应地调整种群个体的收敛性和多样性所占比例,即初期I_(CD)强调收敛性而后期侧重多样性,以平衡高维多目标种群的收敛性和多样性,并获得高质量的解集。进一步地,将I_(CD)嵌入NSGA-Ⅱ算法框架,设计一种基于I_(CD)的高维多目标进化算法(Many-Objective Evolutionary Algorithm Based on I_(CD),MOEA/I_(CD))。最后,将新算法与5种代表性算法一同在DTLZ和MaF系列测试问题上进行反转世代距离(Inverted Generational Distance,IGD)性能测试。实验结果表明:相比5种对比算法,MOEA/I_(CD)具有显著较优的收敛性和多样性。因此,MOEA/I_(CD)是一种颇具前景的高维多目标进化算法(Many-Objective Evolutionary Algorithm,MaDEA)。 The existing Many-Objective Evolutionary Algorithms based on reference points(reference vectors) or scalar utility functions have shortcomings in solving Many-objective Optimization Problems.Based on this, a novel fitness index I_(CD)that dynamically measured the comprehensive performance of individual convergence and diversity was proposed in this article.This index adaptively adjusted the proportion of convergence and diversity of population individuals as the evolutionary process progressed, that was, I_(CD)emphasized the convergence in the early stage, and in the later stage, it focused on the diversity to balance the convergence and diversity of high-dimensional multi-objective populations and obtained high-quality solution sets.Furthermore, the I_(CD)was embedded into the NSGA-Ⅱ algorithm framework to design a Many-Objective Evolutionary Algorithm based on I_(CD),which was MOEA/I_(CD).Finally, Inverted Generational Distance(IGD) performance tests were carried out on DTLZ and MaF series test problems with the new algorithm and five representative algorithms.The experimental results show that compared with the five comparison algorithms, MOEA/I_(CD)has significantly better convergence and diversity.Therefore, MOEA/I_(CD)is a promising Many-Objective Evolutionary Algorithm(MaOEA).
作者 谢承旺 韦伟 郭华 周慧 XIE Chengwang;WEI Wei;GUO Hua;ZHOU Hui(School of Computer and Information Engineering,Nanning Normal University,Nanning,Guangxi,530000,China;School of Data Science&Engineering,South China Normal University,Shanwei,Guangdong,516600,China;School of Business,South China Normal University,Shanwei,Guangdong,516600,China)
出处 《广西科学》 CAS 北大核心 2023年第1期196-207,共12页 Guangxi Sciences
基金 国家自然科学基金项目(61763010) 广西自然科学基金项目(2021GXNSFAA075011) 广西研究生教育创新计划项目(YCSW2020194)资助。
关键词 高维多目标优化问题 进化算法 收敛性 多样性 适应度指标 Many-Objective Optimization Problems evolutionary algorithm convergence diversity fitness index
  • 相关文献

参考文献2

二级参考文献8

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部