摘要
提出一种结合自适应噪声完备集合经验模态分解方法(CEEMDAN)的改进小波阈值降噪算法,用于地下水温观测数据的去噪。在利用该方法与传统的去噪方法分别对仿真信号进行降噪后发现,该去噪方法性能更优,并且在对实际采集到的含有噪声及异常突变的地下水温数据进行处理方面,也展现出比传统单一滤波手段更好的效果。
We propose an improved wavelet threshold de-noising algorithm combined with adaptive noise complete set empirical mode decomposition(CEEMDAN)for the de-noising of groundwater temperature observation data.After using this method and the traditional denoising method to denoise the simulation signal respectively,we find that the proposed denoising method has better performance,and shows better effects than the traditional single filtering method in processing the actually collected groundwater temperature data containing noise and abnormal mutation.
作者
孙德贤
欧同庚
SUN Dexian;OU Tonggeng(Institute of Seismology,CEA,40 Hongshance Road,Wuhan 430071,China;Wuhan Institute of Seismic Scientific Instrument Co Ltd,11 Qinglong Road,Xianning 437000,China;Engineering Technology Research Center for Earthquake Monitoring and Early Warning Disposal of Major Projects in Hubei Province,11 Qinglong Road,Xianning 437000,China)
出处
《大地测量与地球动力学》
CSCD
北大核心
2023年第4期435-440,共6页
Journal of Geodesy and Geodynamics