摘要
为保障老年人室内环境下的安全,及时发现险情并提供救助支持,本文开发了一套老年人室内危险行为监测预警系统,其能够识别老年人常见危险行为,并能进行预警。研究针对老年人常见危险行为中的异常俯身和跌倒,基于RGB相机采集人体姿态信息并提取人体骨架的关键特征点;利用支持向量机对各类危险行为进行分类识别;进一步结合轨迹和定位信息向相关人员远程预警和紧急呼救。实验结果表明,本系统对危险行为识别的真正类率达到97.14%,能够较准确地完成老年人室内危险行为的监测预警,从而有效减缓意外伤害的扩大,保障老年人的居家安全。
In order to ensure the safety of the elderly in indoor environment, and to detect dangerous situations and provide rescue support in time, a set of indoor risky behavior monitoring and early warning system for the elderly was developed, which can identify common risky behaviors of the elderly and give early warning. For the abnormal prone and falling, two common risky behaviors of the elderly, the RGB camera was used to collect human posture information and extract key feature points of human skeleton.. Support vector machine was used to classify all kinds of risky behaviors and further combine the behavior status and location information to provide remote warning and emergency call to the relevant personnel. The results show that the true classification rate of risky behavior recognition by the system is 97.14%. The system can accurately monitor and warn indoor risky behaviors of the elderly, thus effectively slowing down the expansion of accidental injuries and ensuring the home safety of the elderly.
作者
王灵灵
郭世琪
周迎
陈坤辉
Wang Lingling;Guo Shiqi;Zhou Ying;Chen Kunhui(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《土木建筑工程信息技术》
2023年第1期7-12,共6页
Journal of Information Technology in Civil Engineering and Architecture
基金
国家重点研发计划“医养结合服务模式与规范的应用示范”项目(编号:2020YFC2006000)。
关键词
老年人
危险行为识别
安全预警
计算机视觉
人体骨架提取
跟踪定位
The Elderly
Risky Behavior Recognition
Safety Warning
Computer Vision
Human Skeleton Extraction
Tracking and Positioning