期刊文献+

Combat data shift in few-shot learning with knowledge graph 被引量:1

原文传递
导出
摘要 Many few-shot learning approaches have been designed under the meta-learning framework, which learns from a variety of learning tasks and generalizes to new tasks. These meta-learning approaches achieve the expected performance in the scenario where all samples are drawn from the same distributions (i.i.d. observations). However, in real-world applications, few-shot learning paradigm often suffers from data shift, i.e., samples in different tasks, even in the same task, could be drawn from various data distributions. Most existing few-shot learning approaches are not designed with the consideration of data shift, and thus show downgraded performance when data distribution shifts. However, it is non-trivial to address the data shift problem in few-shot learning, due to the limited number of labeled samples in each task. Targeting at addressing this problem, we propose a novel metric-based meta-learning framework to extract task-specific representations and task-shared representations with the help of knowledge graph. The data shift within/between tasks can thus be combated by the combination of task-shared and task-specific representations. The proposed model is evaluated on popular benchmarks and two constructed new challenging datasets. The evaluation results demonstrate its remarkable performance.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第1期101-111,共11页 中国计算机科学前沿(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 62176014, U1836206, 61773361, U1811461).
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部