摘要
为了解决高速磁浮列车悬浮系统长期运行过程中面临的性能退化问题,通过悬浮系统的复杂动态特性分析,基于控制器Youla参数化形式,提出了一种即插即用的悬浮系统控制与优化模块化架构,并设计了基于残差驱动的在线优化算法。仿真结果表明,设计的控制与优化架构以及在线优化算法有效地提高了悬浮系统对未知扰动的鲁棒性和适应能力。
In order to solve the performance degradation problem of magnetic levitation system of hign-speed maglev train during long-term operation, the complex dynamic characteristics of magnetic levitation system was analyzed to build a plug and play modular control and optimization architecture based on Youla parametric form, and an online optimization algorithm based on residual was designed. Simulation results show that the designed control and optimization architecture and online optimization algorithm improve the robustness and adaptability of the magnetic levitation system for unknown disturbance effectively.
作者
翟明达
李晓龙
龙志强
窦峰山
ZHAI Mingda;LI Xiaolong;LONG Zhiqiang;DOU Fengshan(College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China)
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第3期341-350,共10页
Journal of Tongji University:Natural Science
基金
国家自然科学基金(52232013,62003049)。
关键词
高速磁浮列车
性能退化
YOULA参数化
残差
在线优化
high-speed maglev train
performance degradation
Youla parameterization
residual
online optimization