期刊文献+

压缩感知的远场亚波长声成像仿真

Simulation of far-field subwavelength acoustic imaging based on compressed sensing algorithm
下载PDF
导出
摘要 压缩感知算法可以利用信号的稀疏性较好地分辨出两个相距较远的目标,但是当两个目标相距较近时仅利用压缩感知算法,分辨性能较差;另外,当分辨目标为硬散射体时,由于偶极散射的影响,分辨性能也会变得较差。考虑到上述两个问题,该文提出了以下解决方案:针对第一个问题,该文将声学超透镜和压缩感知算法进行结合;针对第二个问题,该文提出在压缩感知算法中考虑偶极散射分量的影响。根据上述方案进行仿真,仿真结果证明了在加入声超透镜并考虑偶极散射以后,硬散射体目标在相距较近时实现了较好的分辨率。 The sparsity of the signal can be adopted by the compressed sensing algorithm to better distinguish two well-separated targets,however,when the two targets are close,the imaging performance is degraded.In addition,for the imaging of rigid scatterers,the resolution performance is also affected by the dipole scattering.To overcome these two shortcomings,an acoustic superlens is introduced to improve the imaging performance of compressed sensing algorithm,and the dipole scattering is considered by adding an extra sensing matrix.Numerical simulations have been carried out to confirm the improvement of imaging performance.
作者 牟亚东 郁高坤 MU Yadong;YU Gaokun(Ocean University of China,Qingdao 266100,China)
机构地区 中国海洋大学
出处 《应用声学》 CSCD 北大核心 2023年第2期363-371,共9页 Journal of Applied Acoustics
基金 国家自然科学基金项目(11674293)。
关键词 超分辨率 压缩感知算法 偶极散射 声学超透镜 Super-resolution Compressed sensing algorithm Dipole scattering Acoustic superlens
  • 相关文献

参考文献3

二级参考文献226

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献1083

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部