摘要
[目的/意义]全域产业数据治理是实现整体产业数字化转型的基础,高水平产业数据治理能力能够有效释放数据效能,提升数据价值,从而赋能产业发展的新业态与新模式。[方法/过程]本文基于非对称创新理论构建“制度—市场—技术”三维框架,使用定性比较分析(QCA)和必要条件分析(NCA)相结合的方法,从组态视角对数智驱动背景下全域产业数据治理能力提升路径展开研究。[结果/结论]我国各省级政府的全域产业数据治理能力水平分布呈现明显的区域差异性和集聚辐射效应。资金投入强度是数智驱动背景下全域产业数据治理能力的关键瓶颈。存在5条提升全域产业数据治理能力的路径,为其他要素基础相似但全域产业数据治理能力不高的区域提供了“殊途同归”的路径借鉴。
[Purpose/Significance]Global industrial data governance is the foundation for realizing the digital transformation of the industry,and high-level industrial data governance capabilities can effectively release data efficiency and enhance data value,thereby empowering new formats and models for industrial development.[Method/Process]This paper constructed a three-dimensional framework of“institution-market-technology”,deconstructed the content of in-depth interviews into 9 subdivision indicators,and used a combination of qualitative comparative analysis(QCA)and necessary condition analysis(NCA)to study the improvement path of capability of industrial data governance under the background of digital intelligence from a configurational perspective.[Result/Conclusion]The level distribution of global industrial data governance capabilities of provincial governments in China shows obvious regional differences and agglomeration radiation effects.The intensity of capital investment is the key bottleneck of the Industrial datagovernance capabilities under the background of digital intelligence drive.There are five ways to improve the industrial data governance capabilities.They provide a reference for the“road to the same destination”path for the regions with similar basis of other elements but low ability of global industrial data governance.
作者
魏明珠
郑荣
雷亚欣
陈玉
高志豪
Wei Mingzhu;Zheng Rong;Lei Yaxin;Chen Yu;Gao Zhihao(School of Business and Management,Jilin University,Changchun 130015,China;Information Resource Research Center,Jilin University,Changchun 130015,China)
出处
《现代情报》
2023年第4期17-27,共11页
Journal of Modern Information
基金
国家社会科学基金一般项目“多源数据驱动下产业竞争情报智慧服务机制与模式研究”(项目编号:21BTQ075)。
关键词
全域产业数据治理
非对称创新
定性比较分析
必要条件分析
global industry data governance
asymmetric innovation
qualitative comparative analysis
necessary condition analysis