摘要
在电子鼻系统中,特征提取和选择以及分类模型都是其性能改进的关键。针对从传感器阵列中提取单一特征时会忽略传感器特异性的问题,提出基于相关性分析来选择每一个传感器最优的特征提取方法,组成最优特征向量进行气体识别,实验表明:通过该方式提取的特征向量在分类模型中表现更好,在各模型的平均识别准确率提升了0.027,其中支持向量机和人工神经网络提升效果最明显,分别提升了0.031和0.054。并根据模型特性和实际需求,提出逻辑回归与支持向量机结合的二次分类模型,实验表明该模型能够进一步提高分类准确率,降低具体气体检测场景中辨别气体错误的风险。
In the electronic nose system,both feature extraction and selection as well as classification models are the keys to its performance improvement.Aiming at the problem of ignoring the sensor specificity when extracting a single feature from the sensor array,this paper proposed to select the optimal feature extraction method for each sensor based on correlation analysis,and form the optimal feature vector for gas identification.The experiment results show the eigenvectors perform better in the classification model,and the average recognition accuracy of each model increases by 0.027,of which the support vector machine and artificial neural network have the most obvious improvement,with an increase of 0.031 and 0.054,respectively.According to the model characteristics and actual requirements,a secondary classification model combining logistic regression and support vector machine is proposed.Experiments show that the model can further improve the classification accuracy and reduce the risk of gas identification errors in specific gas detection scenarios.
作者
陈博
王刚
师春雪
齐国臣
曹仰杰
田辉
卫荣汉
CHEN Bo;WANG Gang;SHI Chun-xue;QI Guo-chen;CAO Yang-jie;TIAN Hui;WEI Rong-han(School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450000,China;Hanwei Electronics Group Corporation,Zhengzhou 450001,China;School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450000,China;Institute of Intelligent Sensing,Zhengzhou University,Zhengzhou 450000,China)
出处
《仪表技术与传感器》
CSCD
北大核心
2023年第2期1-7,共7页
Instrument Technique and Sensor
基金
国家重点研发计划课题(2021YFB3200403)
郑州市协同创新重大专项(20XTZX06013)
河南省高等学校重点科研资助项目(20A460022)
国家自然科学基金面上项目(52171193)
中国博士后科学基金(2021M692926)
河南省科技攻关项目(222102310647)。
关键词
电子鼻
传感器阵列
特征提取
特征选择
分类模型
electronic nose
sensor array
feature extraction
feature selection
classification model