摘要
传统教学资源推荐方法无法处理大量过载信息且质量参差不齐,因此文章研究基于相似度算法的中国建筑史线上课程教学资源推荐方法。首先将兴趣与教学资源的相似度和知识之间连接度融合,构建线上教学资源推荐模型;其次利用信息检索与数据挖掘加权技术,完成相似度算法的增加和文本特征权重的计算;最后通过Apriori算法挖掘用户置信度,与用户相似度进行融合后,完成线上课程教学资源的推荐。测试结果表明:教学资源推荐方法增加相似度算法后,完成教学资源推荐的平均用时为14.8 s,平均准确率也可以达到99.431%,提高了教学资源推荐质量。
The traditional teaching resource recommendation method cannot handle the large amount of overloaded information and the quality varies,so the article studies the similarity algorithm-based online teaching resource recommendation method for Chinese architecture history courses.Firstly,the similarity between interest and teaching resources and the connection between knowledge are fused to build the online teaching resource recommendation model;secondly,the similarity algorithm is increased and the text feature weights are calculated by using information retrieval and data mining weighting techniques;finally,the user confidence is mined by Apriori algorithm and fused with the user similarity to complete the recommendation of online course teaching resources.The test results show that after the similarity algorithm is added to the teaching resource recommendation method,the average time to complete the teaching resource recommendation is 14.8 s,and the average accuracy rate can also reach 99.431%,which improves the quality of teaching resource recommendation.
作者
曲亮
QU Liang(Jilin University of Architecture and Technology,Changchun Jilin 130000,China)
出处
《信息与电脑》
2023年第1期66-68,共3页
Information & Computer
基金
吉林省高教学会高教科研课题“数字化时代的《中国建筑史》线上课程优化探究”(项目编号:JGJX2022D562)。
关键词
相似度算法
线上课程
教学资源
推荐方法
similarity algorithm
online courses
teaching resources
recommended method