期刊文献+

融合部分卷积和注意力机制对抗网络模型的地震数据重建 被引量:3

Seismic data reconstruction based on partial convolution and attentional mechanism adversarial network model
下载PDF
导出
摘要 以生成对抗网络(GAN)为代表的深度学习模型在地震数据重建中取得了较好效果,但普通GAN网络的重建结果常存在模糊、假频等缺点。主要原因是:普通卷积模型在对缺失较大的数据进行卷积时,其卷积结果主要受缺失区域的影响,而有效区域的影响较小;且普通卷积模型属于局部操作,卷积结果主要受卷积核内数据的影响,而相距较远的数据对其影响甚微。为此,文中提出了融合部分卷积和注意力模型的改进GAN网络。首先,在卷积过程中引入一个比例因子r实现部分卷积,从而强化有效区域对卷积结果的影响;然后,利用注意力机制选择余弦相似度高的有效(背景)数据,以突破卷积距离的限制,使更多背景数据参与缺失区域的重建。数据处理结果表明,所提方法显著改善了重建数据中的模糊、假频等现象。 The deep learning model represented by generative adversal network(GAN)has achieved good results in seismic data reconstruction,but the reconstruction results of ordinary GAN networks have some shortcomings such as ambiguity and false frequency.The main reasons are as follows:during convolution,part of the convolution kernel slides into the missing region,so that the convolution result is affected by the region without data;Secondly,due to the limitation of the size of the convolution kernel,the convolution result is mainly affected by the data in the convolution kernel,and the effective information of distant locations cannot be obtained.In order to solve these two problems,this paper uses the part of the convolution thought and attention to improve GAN network model,Firstly,a scale factor r is introduced into the convolution process to achieve partial convolution,so as to shrink the convolution result and strengthen the influence of the effective region on the convolution result.Secondly,the attention mechanism is used to select the background data with high cosine similarity,which can break through the convolution distance limit and make more effective background data promote the reconstruction of the missing foreground data region,The data processing results show that the proposed method can improve the problems of ambiguity and false frequency in reconstructed data.
作者 冯永基 陈学华 FENG Yongji;CHEN Xuehua(State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu,Sichuan 610059,China;Key Lab of Earth Exploration&Information Techniques of Ministryof Education,Chengdu University of Technology,Chengdu,Sichuan 610059,China)
出处 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期21-30,共10页 Oil Geophysical Prospecting
基金 国家自然科学基金项目“致密储层裂缝系统诱发地震异常的机理及其与储层产能的关系”(41874143)、“含流体弱能量暗点储层的地震识别机理与方法”(41574130) 中央引导地方科技发展资金项目“裂缝介质的动态岩石物理力学与地震波传播机理”(21ZYZYTS0167)联合资助。
关键词 部分卷积 注意力机制 生成对抗网络 数据重建 余弦距离 partial convolution attention mechanism against generated network data reconstruction visualization cosine distance
  • 相关文献

参考文献3

二级参考文献12

共引文献34

同被引文献29

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部