期刊文献+

求解多尺度稀疏矩阵的代数界面优先AMG光滑子 被引量:1

AN AMG SMOOTHER BASED ON ALGEBRAIC INTERFACE-PRIOR FOR SOLVING MULTL-SCALE SPARSE MATRICES
原文传递
导出
摘要 光滑子是影响代数多重网格算法(AMG)求解效率的重要组件之一.本文考虑实际应用中普遍出现的一类多尺度稀疏矩阵,由于多尺度性质的影响,现有AMG光滑子的光滑效果不理想,从而影响AMG算法求解该类方程的效率.借助代数界面的概念,本文分析了代数界面对松弛型光滑子的影响,并通过扩展代数界面的内涵,设计了一种代数界面优先的光滑子(AI-Smoother).以Gauss-Seidel(GS)光滑子为例,通过三维模型问题和实际问题测试了该光滑子(AI-GS)的有效性.测试表明,与自然序GS光滑子相比,AI-GS有效改善了AMG算法的收敛速度.对于三维随机系数扩散方程百万自由度算例,AI-GS可获得28.2%的加速,对于激光聚变应用中的三温方程百万自由度算例,AI-GS可获得28.8%的加速. The smoother is one of the important components that affects the solution efficiency of the Algebraic Multigrid Algorithm(AMG).This paper considers a class of multi-scale sparse matrices that commonly appear in practical applications.Due to the influence of multi-scale properties,the smoothing effect of the existing AMG smoothers is not work well,which affects the efficiency of the AMG algorithm for solving multi-scale sparse matrices.Using the concept of algebraic interface,this paper analyzes the influence of algebraic interface on relaxation smoothers,and by extending the concept of algebraic interface,an algebraic interface-prior smoother(AI-Smoother)is designed.Taking Gauss-Seidel(GS)smoother as an example,the effectiveness of the AI-porior smoother(AI-GS)is tested through 3D model problems and practical problems.Numerical results show that,compared with the original GS smoother,AI-GS effectively improves the convergence speed of the AMG algorithm.AI-GS can achieve a 28.2% speedup for the three-dimensional random coefficient diffusion equation with one million degrees of freedom.For the three-temperature equation in laser fusion applications,AI-GS can achieve a 28.8% speedup.
作者 刘笑 徐小文 Liu Xiao;Xu Xiaowen(Graduate School of China Academy of Engineering Physics,Beijing 100193,China;Institute of Applied Physics and Computational Mathematics,Beijing 100094,China)
出处 《数值计算与计算机应用》 2023年第1期1-11,共11页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(62032023) 科学挑战专题项目(TZZT2019)资助。
关键词 代数多重网格算法(AMG) 光滑子 多尺度稀疏矩阵 代数界面 Algebraic multigrid(AMG) Smoother Multi-scale sparse matrice Algebraic Interface
  • 相关文献

参考文献3

二级参考文献37

  • 1谭敏,肖映雄,舒适.一种各向异性四边形网格下的代数多重网格法[J].湘潭大学自然科学学报,2005,27(1):78-84. 被引量:6
  • 2徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 3徐小文,莫则尧.并行代数多重网格算法可扩展性能分析[J].计算物理,2007,24(4):387-394. 被引量:9
  • 4Basov N G, Krokhin O N. In: Proceedings of the 3rd International Conference on Quantum Electronics (Paris, 1963, edited by Grivet P, Bloembergen N). New York :Columbia University Press, 1964. 1373.
  • 5王淦昌.中国激光,1987,14:641-641.
  • 6Nuekolls J H, Wood L, Thiessen A et al. Nature, 1972, 239:129.
  • 7Lindl J. Phys. Plasmas, 1995, 2: 3933.
  • 8Lindl J, Amendt P, Berger R Letal. Phys. Plasmas, 2004, 11: 339.
  • 9Zhang W Y, He X T. 15th International conference on Inertial Fusion Sciences and Applications (IFSA 2007), edited by Azechi H, Hammel B;Gauthier J. Journal of Physics: Conference Series, 2008, 112 : 032001.
  • 10He X T. Intertial Fusion Sciences and Applications 200I, edited by Tananka K A, Meyerhofer D D and Meyer-ter-Vehn J(Elsevier SAS, 2002).

共引文献41

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部