摘要
光滑子是影响代数多重网格算法(AMG)求解效率的重要组件之一.本文考虑实际应用中普遍出现的一类多尺度稀疏矩阵,由于多尺度性质的影响,现有AMG光滑子的光滑效果不理想,从而影响AMG算法求解该类方程的效率.借助代数界面的概念,本文分析了代数界面对松弛型光滑子的影响,并通过扩展代数界面的内涵,设计了一种代数界面优先的光滑子(AI-Smoother).以Gauss-Seidel(GS)光滑子为例,通过三维模型问题和实际问题测试了该光滑子(AI-GS)的有效性.测试表明,与自然序GS光滑子相比,AI-GS有效改善了AMG算法的收敛速度.对于三维随机系数扩散方程百万自由度算例,AI-GS可获得28.2%的加速,对于激光聚变应用中的三温方程百万自由度算例,AI-GS可获得28.8%的加速.
The smoother is one of the important components that affects the solution efficiency of the Algebraic Multigrid Algorithm(AMG).This paper considers a class of multi-scale sparse matrices that commonly appear in practical applications.Due to the influence of multi-scale properties,the smoothing effect of the existing AMG smoothers is not work well,which affects the efficiency of the AMG algorithm for solving multi-scale sparse matrices.Using the concept of algebraic interface,this paper analyzes the influence of algebraic interface on relaxation smoothers,and by extending the concept of algebraic interface,an algebraic interface-prior smoother(AI-Smoother)is designed.Taking Gauss-Seidel(GS)smoother as an example,the effectiveness of the AI-porior smoother(AI-GS)is tested through 3D model problems and practical problems.Numerical results show that,compared with the original GS smoother,AI-GS effectively improves the convergence speed of the AMG algorithm.AI-GS can achieve a 28.2% speedup for the three-dimensional random coefficient diffusion equation with one million degrees of freedom.For the three-temperature equation in laser fusion applications,AI-GS can achieve a 28.8% speedup.
作者
刘笑
徐小文
Liu Xiao;Xu Xiaowen(Graduate School of China Academy of Engineering Physics,Beijing 100193,China;Institute of Applied Physics and Computational Mathematics,Beijing 100094,China)
出处
《数值计算与计算机应用》
2023年第1期1-11,共11页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(62032023)
科学挑战专题项目(TZZT2019)资助。