摘要
给定素数p和满足1≤k≤t的正整数t,k.在这篇文章,给出集合D′(p,t,k)={(r,s)∈{0,1,…,p-1}^(2):■a,b≥0,(^(p^(t)a+r)_( p^(t)b+s))≡(^(a)_(b))(^(r)_(s))(mod p^(t+k))}和D(p,t,k)={(r,s)∈{0,1,…,p-1}^(2):■a,b≥0,(^(p^(t)a+r)_( p^(t)b+s))≡(^(a)_(b))(^(r)_(s))(mod p^(t+k))}的刻画.
Let p be a prime and let t,k be positive integers such that 1≤k≤t.In this paper,we establish several characterizations of D′(p,t,k)={(r,s)∈{0,1,…,p-1}^(2):■a,b≥0,(^(p^(t)a+r)_( p^(t)b+s))≡(^(a)_(b))(^(r)_(s))(mod p^(t+k))} and D(p,t,k)={(r,s)∈{0,1,…,p-1}^(2):■a,b≥0,(^(p^(t)a+r)_( p^(t)b+s))≡(^(a)_(b))(^(r)_(s))(mod p^(t+k))}.
作者
黎洪键
官欢欢
LI Hong-jian;GUAN Huan-huan(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China;School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China)
出处
《数学的实践与认识》
2023年第2期258-264,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(12171163)
贵州省科学计划项目(黔科合[2018]1021)。