摘要
Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinning due to the strong basal texture(<0001>//ND,normal direction).In this work,the tensile yield strength in the ND of the as-rolled(AR)AZ31 plate increased from 50 to 150 MPa(increased by 200%)via simple processing,i.e.,pre-tension and rolling-annealing(PTRA)treatment.The strong basal texture(<0001>//ND)of the AR plate was changed into a weakened fiber texture(<0001>⊥ND).The evolution of microstructures during PTRA treatment and the activated deformation modes during uniaxial tension were studied quantitatively and statistically by the means of intergranular misorientation(IM)and in-grain misorientation axes(IGMA)analysis.The results indicate that various twin variants,as well as{10-12}-{10-12}secondary twins,were activated during pre-tension and rolling,and most residual matrix was consumed by twins after annealing.The dominated deformation modes in tension changed from{10-12}tension twinning(the AR sample)to prismatic slip(the PTRA sample)in the early tensile deformation.The underlying formation mechanism of the fiber texture and corresponding strengthening mechanism were discussed.
基金
supported by the National Natural Science Foundation of China(Nos.51575068 and 51501023)
the State Key Research and Development Program of MOST,China(No.2016627 YFB0701204)
the Fundamental Research Funds for the Central Universities(No.2020CDJDPT001)
the Chongqing Natural Science Foundation(Nos.cstc2018jcyjAX0364 and cstc2021jcyj-msxmX0699)
the“111”Project of the Ministry of Education(No.B16007).