期刊文献+

卷积神经网络的硬件加速设计 被引量:3

Design of Hardware Acceleration System Based on FPGA
下载PDF
导出
摘要 为解决目标检测算法随识别率的提高而当前普通的处理器无法满足算法的计算需求和内存需求等问题,该文采用一种基于FPGA的设计方法对卷积神经网络进行硬件加速,使用HLS技术设计YOLOv2目标检测算法,对算法中的各个网络层次进行相应的优化,并在FPGA加速器中对图像权重数据、像素数据进行复用以降低访问次数和数据量从而降低系统时延。实验结果表明,系统性能达28.37 GOPs(giga operations per second,10亿次运算/s),功耗为2.60 W,与CPU(E5-2620v4)相比,系统性能是CPU的7.14倍,功耗仅占CPU的2.8%,与当前目标检测系统相比具有一定优势。 In order to solve the problem that the target detection algorithm increases with the recognition rate and the current ordinary processor cannot meet the computational demand and memory requirement of the algorithm. An FPGA-based design method is used to accelerate the convolutional neural network in hardware. The YOLOv2 target detection algorithm is designed using HLS technology,and each network level of the algorithm is optimized accordingly.The experimental results show that the system performance reaches 28.37 GOPs(giga operations per second) and the power consumption is 2.60 W. Compared with the CPU(E5-2620v4),the system performance is 7.14 times of the CPU and the power consumption is only 2.8% of the CPU,which has certain advantages compared with current target detection systems.
作者 张灿宇 赵冰洁 王俊彭 易星 ZHANG Can-yu;ZHAO Bing-jie;WANG Jun-peng;YI Xing(School of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142,China;Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China)
出处 《自动化与仪表》 2023年第3期6-10,18,共6页 Automation & Instrumentation
基金 国家自然科学基金项目(91648204)。
关键词 FPGA 神经网络 硬件加速 目标检测 FPGA neural network hardware acceleration target detection
  • 相关文献

参考文献3

二级参考文献1

共引文献72

同被引文献59

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部