期刊文献+

面向医疗文本信息的方面级情感分析 被引量:2

Aspect-Level Sentiment Analysis for Medical Text Information
原文传递
导出
摘要 近年来,文本方面级的细粒度情感分析受到了越来越多的重视,并且在医疗文本方面的作用也越来越大。与粗粒度情感分析相比,细粒度情感分析可以区分医疗文本的每个具体方面词,并且可以得到每个方面词所表达的情感信息。方面级情感分析任务需要考虑方面词和情感词之间的交互,而医疗文本既可作为方面词,又可作为情感词。因此,提出了一个包含上下文位置潜在信息的方面级情感分析模型,实现对于医疗文本信息的情感分析。医疗文本中与特定方面词情感极性判断相关的上下文词一般位于该方面词的附近,而且由于医疗方面词的上下文的词数量存在差异,可能会导致词嵌入向量表示的属性变化,使得方面词的相对位置会有所不同。因此,提出了一种新的上下文位置调整函数,通过调整上下文词在不同位置的权重,增强与指定方面词相关的情感极性词的针对性,减轻方面词两侧词数差异对情感极性判断的干扰。同时,为了将包含特定方面的情感信息的方面词以向量表示,引入了一个线性条件随机场模型辅助建立方面词向量表示的模型。最终,使用焦点损失函数来训练模型参数,处理医疗文本中的情感分析的类不平衡问题。 In recent years, text level fine-grained sentiment analysis has received more and more attention, and its role in medical text is also growing. Compared with coarse-grained sentiment analysis, aspect-level sentiment analysis can distinguish each specific aspect word of the medical text, and can get the emotional information expressed by each aspect word. Aspect-level sentiment analysis task need consider the interaction between aspect words and sentiment words. Medical texts can be used as both aspect words and sentiment words. So in this paper, we propose an aspect-level sentiment analysis model with Contextual Position Latent Information. At the same time, the context words related to the sentiment polarity judgment of specific aspect words in the medical text are generally located near the aspect words. Moreover, due to the difference in the number of words in the context of medical aspect words, the attribute of word embedding vector representation may change, making the relative position of aspect words different. Therefore, this paper proposes a new context location adjustment function to enhance the pertinence of the sentiment polarity words related to the designated aspect words, and reduce the interference of the number of words on both sides of the aspect words on the judgment of sentiment polarity. At the same time, a linear conditional random field model is introduced to help establish the vector representation model of aspect words in order to express the aspect words containing the emotional information of a specific aspect. Finally, the focus loss function is used to train the model parameters to deal with the class imbalance of sentiment analysis in medical texts.
作者 王萍 李璋寅 郭茹燕 黄勃 王董祺 WANG Ping;LI Zhangyin;GUO Ruyan;HUANG Bo;WANG Dongqi(School of Continuing Education,Shanghai University of Engineering Science,Shanghai 201620,China;School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2023年第1期60-68,共9页 Journal of Wuhan University:Natural Science Edition
基金 上海市2021年度“科技创新行动计划”社会发展科技攻关项目(21DZ1204900)。
关键词 自然语言处理 方面级情感分析 语境权重调整 焦点损失函数 natural language process aspect-level sentiment analysis context weight adjustment focal loss function
  • 相关文献

参考文献10

二级参考文献44

  • 1黄昌宁 等.对自动分词的反思[A]..语言计算与基于内容的文本处理[C].北京:清华大学出版社,2003,7.26-38.
  • 2TURNEY P D. Mining the Web for synonyms: PMI-IR versus LSA on TOEFL[ C ]//Proceedings of the 12th Eu- ropean Conference on Machine Learning. Berlin: Spring- er-Verlag, 2001:491-502.
  • 3Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 4Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 5Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 6Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 7Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 8Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 9P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.
  • 10P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001.

共引文献437

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部