期刊文献+

Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs

下载PDF
导出
摘要 Background:N6-methyladenosine(m^(6)A)and DNA 5-methylcytosine(5mC)methylation plays crucial roles in diverse biological processes,including skeletal muscle development and growth.Recent studies unveiled a potential link between these two systems,implicating the potential mechanism of coordinated transcriptional and post-transcrip-tional regulation in porcine prenatal myogenesis and postnatal skeletal muscle growth.Methods:Immunofluorescence and co-IP assays were carried out between the 5mC writers and m^(6)A writers to investigate the molecular basis underneath.Large-scale in-house transcriptomic data were compiled for applying weighted correlation network analysis(WGCNA)to identify the co-expression patterns of m^(6)A and 5mC regulators and their potential role in pig myogenesis.Whole-genome bisulfite sequencing(WGBS)and methylated RNA immu-noprecipitation sequencing(MeRIP-seq)were performed on the skeletal muscle samples from Landrace pigs at four postnatal growth stages(days 30,60,120 and 180).Results:Significantly correlated expression between 5mC writers and m^(6)A writers and co-occurrence of 5mC and m^(6)A modification were revealed from public datasets of C2C12 myoblasts.The protein-protein interactions between the DNA methylase and the m^(6)A methylase were observed in mouse myoblast cells.Further,by analyzing tran-scriptome data comprising 81 pig skeletal muscle samples across 27 developmental stages,we identified a 5mC/m^(6)A epigenetic module eigengene and decoded its potential functions in pre-or post-transcriptional regulation in postnatal skeletal muscle development and growth of pigs.Following integrative multi-omics analyses on the WGBS methylome data and MeRIP-seq data for both m^(6)A and gene expression profiles revealed a genome/transcriptome-wide correlated dynamics and co-occurrence of 5mC and m^(6)A modifications as a consequence of 5mC/m^(6)A crosstalk in the postnatal myogenesis progress of pigs.Last,we identified a group of myogenesis-related genes collaboratively regulated by both 5mC and m^(6)A modifications in postnatal skeletal muscle growth in pigs.Conclusions:Our study discloses a potential epigenetic mechanism in skeletal muscle development and provides a novel direction for animal breeding and drug development of related human muscle-related diseases.
出处 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期564-577,共14页 畜牧与生物技术杂志(英文版)
基金 supported by the Agricultural Science and Technology Innovation Program and The Elite Young Scientists Program of CAAS.ZT was supported by the National Natural Science Foundation of China(31830090) the Basic and Applied Basic Research Foundation of Guangdong province(2019B1515120059) the Shenzhen Dapeng New District Special Fund for Industry Development(KY20180114) the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202006).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部