期刊文献+

基于分层级联技术的梯形声表面波滤波器正向设计

Forward Design of Ladder Surface Acoustic Wave Filter Based on Hierarchical Cascading Technique
下载PDF
导出
摘要 针对任意复杂拓扑结构的梯形声表面波(SAW)滤波器的精确快速设计问题,基于声/电/磁多物理场耦合全波仿真平台,结合基因遗传优化算法和通用图形处理器(GPGPU)加速技术,利用有限元分层级联精确模型(HCT)代替COM模型进行SAW滤波器的设计与优化,计算速度和优化速度与COM模型相当。通过42°Y-X LiTaO 3常规SAW滤波器的优化设计与研制,插入损耗为0.67 dB,2 dB相对带宽为3.85%,验证了该方法的有效性和可行性。 In view of accurate and fast design of ladder surface acoustic wave(SAW)filter with arbitrary and complex topology,based on acoustic/electrical/magnetic multi-physical field coupling full-wave simulation platform and combined with genetic optimization algorithm and general graphics processor(GPGPU)acceleration technology,the hierarchical cascade exact model(HCT)is used to replace COM model for the design and optimization of SAW filter.The calculation and optimization speed are comparable with that of COM model.The optimized design and development of 42°Y-X LiTaO 3 conventional SAW filter with insertion loss of 0.67 dB and 2 dB fractional bandwidth of 3.85%verifies the effectiveness and feasibility the proposed method.
作者 赵雪梅 郑泽渔 白涛 贺贞 谢晓 谭瑞 肖强 陈正林 马晋毅 ZHAO Xuemei;ZHENG Zeyu;BAI Tao;HE Zhen;XIE Xiao;TAN Rui;XIAO Qiang;CHEN Zhenglin;MA Jinyi(The 26th Institute of China Electronics Technology Group Corporation,Chongqing 400060,China;Science and Technology on Analog Integrated Circuit Laboratory,Chongqing 400060,China)
出处 《压电与声光》 CAS 北大核心 2023年第1期1-5,共5页 Piezoelectrics & Acoustooptics
关键词 SAW滤波器 全波仿真 分层级联 遗传算法 SAW device full-wave simulation hierarchical cascade genetic algorithm
  • 相关文献

参考文献4

二级参考文献28

  • 1[1]Koskela J. and Plessky V. P. Suppression of the Leaky SAW attenuation with heavy mechanical loading. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(2):439-449.
  • 2[2]Hashimoto K. Y., Yamaguchi M., Mineyoshi S. et al. Optimum leaky-SAW cut of LiTaO3 for minimised insertion loss devices. In:Proceedings of the IEEE Ultrasonics Symposium, 1997, 245-254.
  • 3[3]Takamine Y. C. U. S. patent, 6 621 380 B2, 2003-9-16.
  • 4[4]Thomas B., Gunter K., Ulrike R. et al. U.S. patent, 6 420 946B1, 2002-07-16.
  • 5[5]Milsom R. F., Reilly N. H. C. and Redwood M. Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers. IEEE Transactions on Sonics and Ultrasonics, 1977, 24(3): 147-166.
  • 6[6]Ventura P., Hode J. H. and Lopes B. Rigorous analysis of finite SAW devices with arbitrary electrode geometries. In: Proceedings of the IEEE Ultrasonics Symposium, 1995, 257-262.
  • 7[7]Gamble K. J. and Malocha D. C. Simulation of short LSAW transducers including electrode mass loading and finite finger resistance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(1): 47-56.
  • 8[8]Qiao D. H., Liu W. and Smith P. M. General Green's functions for SAW device analysis. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(5): 1242-1253.
  • 9[9]Kovacs G., Anhorn M., Engan H. E. et al. Improved material constants for LiNbO3 and LiTaO3. In: Proceedings of the IEEE Ultrasonics Symposium, 1990, 435-438.
  • 10[10]Knuuttila J. V., Koskela J., Vartiainen J. et al. BAW radiation from LSAW resonators on lithium tantalate. In: Proceedings of the IEEE Ultrasonics Symposium, 2001, 193-196.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部