期刊文献+

不确定非方广义分数阶T-S模糊系统的鲁棒镇定

Robust stabilization for uncertain rectangular descriptor fractional order T–S fuzzy systems
下载PDF
导出
摘要 针对不确定非方广义分数阶T-S模糊系统阶数为0<α<1的鲁棒镇定问题,提出了一个有效的判据.首先,利用一个新的T-S模糊动态补偿器,将不确定非方广义分数阶T-S模糊系统转化为一个增广的不确定方形广义分数阶T-S模糊系统.由于增广变量的引入,动态补偿器的设计问题可以等价为静态输出反馈控制器的设计问题.其次,设计一个分数阶导数反馈控制器对得到的增广系统进行正常化处理.然后,对正常化得到的不确定分数阶T-S模糊系统进行研究,得到一个系统渐近稳定的充分条件.该条件保守性小并且形式简洁.最后,通过一个数值算例和一个实际例子验证了本文所提出结论的正确性和有效性. An effective criterion is proposed for the robust stabilization for uncertain rectangular descriptor fractional order Takagi-Sugeno(T–S)fuzzy systems with 0<<1.Firstly,by using a new T–S fuzzy dynamic compensator,the uncertain rectangular descriptor fractional order T–S fuzzy systems are transformed into the augmented uncertain square descriptor fractional order T–S fuzzy systems.Due to the introduction of the augmented plant,the gain matrices of the dynamic compensator can be solved by an equivalent static output feedback.Secondly,a fractional order derivative state feedback controller is constructed to normalize the augmented uncertain square descriptor fractional order T–S fuzzy systems.Thirdly,a sufficient condition of asymptotical stability is proposed for normalized systems,which have less conservatism and more concise form.Finally,a numerical example and a practical example are given to verify the effectiveness of the main result in this paper.
作者 张雪峰 艾洁 赵泽丽 ZHANG Xue-feng;AI Jie;ZHAO Ze-li(College of Sciences,Northeastern University,Shenyang Liaoning 110819,China;College of Information Science and Engineering,Northeastern University,Shenyang Liaoning 110819,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第1期47-54,共8页 Control Theory & Applications
基金 国家重点研发计划项目(2020YFB1710003) 国家自然科学基金项目(U20A20189) 辽宁省振兴人才计划项目(XLYC1907049)资助。
关键词 非方广义分数阶系统 T-S模糊模型 动态补偿器 鲁棒镇定 线性矩阵不等式 rectangular descriptor fractional order systems T–S fuzzy model dynamic compensator robust stabilization linear matrix inequalities
  • 相关文献

参考文献3

二级参考文献44

  • 1Dai L. Singular Control Systems-Lecture Notes in Control and Information Science[M]. Berlin: Springer - Verlag, 1989.
  • 2Mukundan R, Dayawansa W. Feedback Control of Singular Systems-Proportional and Derivative Feedback of the State[J]. Int J Syst Sci, 1983, 14:615-632.
  • 3Ozcaldiran K, Lewis F L. On the Regularizability of Singular Systems [J]. IEEE Trans on Automatic Control, 1990, 35(10): 1156-1160.
  • 4Bunse-Gerstner A, Mehrmann V, Nichols N K.Regularization of Descriptor Systems by Output Feedback [J]. IEEE Trans on Automatic Control,1994, 39(8): 1742-1748.
  • 5Chu D L, Ho D W C. Necessary and Sufficient Conditions for the Output Feedback Regularization of Descriptor Systems [J]. IEEE Trans on Automatic Control, 1999, 44(2): 405-412.
  • 6Lovass-Nagy V, Powers D L, Schiling R J. On Regularizing Descriptor Systems by Output Feedback [J]. IEEE Trans on Automatic Control, 1994, 39(7): 1507-1509.
  • 7Ishihara J Y, Terra M H. Impulse Controllability and Observability of Rectangular Descriptor Systems [J].IEEE Trans on Automatic Control, 2001, 46(6): 991-994.
  • 8Hou M. Controllability and Elimination of Impulsive Modes in Descriptor Systems [J]. IEEE Trans on Automatic Control, 2004, 49(10): 1723-1727.
  • 9Syrmos V L, Abdallah C T, Dorato P, et al. Static Output Feedback-A Survey[J]. Automatica, 1997, 33(2): 125-137.
  • 10Cobb D. Controllability, Observability, and Duality in Singular Systems [J]. IEEE Trans on Automatic Control,1984, 29(12): 1076-1082.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部