期刊文献+

基于神经网络观测器的反推终端滑模位置控制 被引量:3

Backstepping terminal sliding mode position control based on neural network observer
下载PDF
导出
摘要 为了提高永磁直线同步电机(PMLSM)的位置跟踪精度,本文提出了一种基于神经网络自适应观测器的反推终端滑模控制(TSMC)方法.首先,建立PMLSM的动力学模型.然后,利用RBF神经网络的万能逼近特性去逼近系统中不确定性,并将逼近后的输出信号输入给自适应观测器进行跟踪目标位置和速度的估计,补偿由不确定性所导致的跟踪误差,进而获得高精度的跟踪性能.同时反推TSMC方法能够保证系统状态在有限时间内收敛,有效改善了系统响应速度和鲁棒性能.此外,设计出一种新型饱和函数来改善系统抖振,并利用Lyapunov稳定性定理进行了闭环系统稳定性分析.最后,通过空载和负载实验证实了该控制方案的有效性. In this paper,a backstepping terminal sliding mode control(TSMC)method based on neural network adaptive observer is designed to promote the position tracking accuracy of permanent magnet linear synchronous motor(PMLSM).First,the dynamics model of PMLSM is established.Then,the generalized approximation property of RBF neural network is used to approximate the system uncertainty,and the approximated output signal is fed to the adaptive observer for tracking target position and velocity estimation to compensate the tracking error caused by the uncertainty,and then obtain the high accuracy tracking performance.The backstepping TSMC method also ensures that the system state converges in finite time,which effectively develops the response speed and robustness.In addition,a new saturation function is designed to weaken chattering,and Lyapunov theorem is used to ensure the stability of the closed-loop system.Finally,the effectiveness of the control scheme is verified through no-load and load experiments.
作者 付东学 赵希梅 FU Dong-xue;ZHAO Xi-mei(School of Electrical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第1期132-138,共7页 Control Theory & Applications
基金 辽宁省自然科学基金计划重点项目(20170540677)资助。
关键词 永磁直线同步电机 神经网络 终端滑模控制 观测器 抖振 permanent magnet linear synchronous motor neural network terminal sliding mode control observer chattering
  • 相关文献

参考文献3

二级参考文献40

  • 1张希,陈宗祥,潘俊民,王杰.永磁直线同步电机的固定边界层滑模控制[J].中国电机工程学报,2006,26(22):115-121. 被引量:54
  • 2Su W T, Liaw C M. Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer[J]. IEEE Transactions on Power Electron, 2006, 21(2): 505-517.
  • 3Boldea I, Nasar S A. Linear electric actuators and generators[M]. London, U.K.: Cambridge Univ Press, 1997: 5-16.
  • 4Su W T, Liaw C M. Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer[J].IEEE Transactions on Power Electron, 2006, 21(2): 505-517.
  • 5Lin F J, Teng L T, Chu H. Modified Elman neural network controller with improved particle swarm optimization for linear synchronous motor drive[J]. IET Electric Power Applications, 2008, 2(3): 201-214.
  • 6Lin F J, Teng L T, Chu H. A robust recurrent wavelet neural network controller with improved particle swarm optimization for linear synchronous motor drive[J]. IEEE Transaction on Power Electron, 2008, 23(6): 3067-3078.
  • 7Veselic B, Improved Perunicic-Drazenovic B, Milosavljevic C discrete-time sliding-mode position controlusing Euler velocity estimation[J]. IEEE Transactions on Industry Applications, 2010, 57(11): 3840-3847.
  • 8Slotine J-J E, Li Weiping. Applied nonlinear control[M]. New Jersey: Prentice Hall, 1991: 276-306.
  • 9Matas J, de Vicuna L G, Miret J. Feedback linearization of a single-phase active power filter via sliding mode control[J]. IEEE Transactions on Power Electron, 2008, 23(1): 116-125.
  • 10Cao J B, Cao B G. Fuzzy-logic-based sliding-mode controller design for position-sensorless electric vehicle[J]. IEEE Transactions on Power Electron, 2009, 24(10): 2368-2378.

共引文献71

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部