期刊文献+

地铁车辆走行部关键部件状态维修研究及实践 被引量:4

Research and Practice on Condition Maintenance of Key Components in Running Gear of Metro Vehicles
下载PDF
导出
摘要 针对目前城市轨道交通车辆走行部在线监测系统分散、数据利用率低、不能有效指导维修和维护等问题,从资源优化配置和降本增效需求出发,提出了基于监测数据智能诊断分析的城轨车辆走行部关键部件状态维修理念,形成了集隐患挖掘、健康管理、寿命预测与维修建议于一体的方法论,建立了基于大数据的走行部和轮轨智能分析诊断平台,实现了走行部关键部件实时监测、预警报警、故障诊断、寿命预测和维护辅助决策功能,应用于车载走行部实时监测系统和地面智能分析平台两大场景,并在城轨车辆轴箱和齿轮箱的状态维修、轮对踏面经济镟等方面进行了实践应用,效果表明可显著提高检修效率并有效降低全寿命周期维护成本。 Aiming at the problems of decentralized online monitoring system,low data utilization rate,and inability to effectively guide maintenance of vehicle running gear in urban rail transit,this paper proposes a condition-based maintenance concept for key components of urban rail vehicle running gear based on intelligent diagnosis and analysis of monitoring data from the perspective of resource optimization configuration and cost reduction and efficiency improvement,and forms a methodology integrating hidden danger mining,health management,life prediction and maintenance recommendations.The intelligent analysis and diagnosis platform of running gear and wheel-rail based on big data is established,realizing real-time monitoring,early warning and alarm,fault diagnosis,life prediction and maintenance-assisted decision-making functions for key components of running gear.The platform is applied to the two scenarios of the real-time monitoring system of the on-board running gear and the ground intelligent analysis platform,and is practically applied in the condition-based maintenance of axle box and gearbox of urban rail vehicles,and the economic turning of the wheelset tread,etc.The effect shows that it can significantly improve the maintenance efficiency and effectively reduce the whole life cycle maintenance cost.
作者 王晓军 WANG Xiaojun(Beijing Subway Co.,Ltd.,Beijing 100044,China)
出处 《智慧轨道交通》 2023年第2期33-39,共7页 SMART RAIL TRANSIT
基金 国家重点研发计划项目(2020YFB1600700)。
关键词 地铁车辆 走行部 状态维修 经济镟 寿命预测 维修决策 metro vehicles running gear condition-based maintenance economic turnaround life prediction maintenance decisions
  • 相关文献

参考文献11

二级参考文献44

  • 1郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 2程祖国,王居宽,陈鞍龙,浦汉亮,余强.城市轨道交通车辆部件故障与均衡修修程周期[J].城市轨道交通研究,2006,9(1):46-49. 被引量:21
  • 3朱春梅,徐小力,张建民.基于混沌时间序列的旋转机械非平稳状态预测方法研究[J].机械设计与制造,2006(12):103-105. 被引量:4
  • 4VLOK P J, COETZEE J L, BANJEVIC D, et al. Optimal component replacement decisions using vibration monitoring and the proportional-hazards model [J]. Journal of the Operational Research Society, 2002, 53(2) :193- 202.
  • 5LIN D, WISEMAN M, BANJEVIC D, et al. An ap proach to signal processing and condition-based maintenance for gearboxes subject to tooth failure[J]. Mechanical System and Signal Processing, 2004, 18:993- 1007.
  • 6MAKIS V, WU J, GAO Y. An application of DPCA to oil data for CBM modeling [J]. European Journal of Operational Research, 2006, 174: 112- 123.
  • 7VLOK P J, WNEK M, ZYGMUNT M. Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions [J]. Mechanical System and Signal Processing, 2004, 18:833-847.
  • 8KWAN C, ZHANG X, XU R et al. A noval approach to fault diagnostics and prognostics [A].Proceedings of IEEE International Conference on Robotics & Automation[C]. Taipei, 2003.
  • 9ZHANG X, XU R, KWAN C, et al. An integrated approach to bearing fault diagnostics and prognostics [A]. Proceedings of American Control Conference [C]. Portland, USA, 2005.
  • 10DONG M, HE D. Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis [J]. European Journal of Operational Research, 2007, 178(3): 858-878.

共引文献90

同被引文献30

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部