期刊文献+

无监督学习全局和局部特征建模的低光照图像增强

Low-light Image Enhancement Based on Unsupervised Learning Global and Local Feature Modeling
下载PDF
导出
摘要 在EnlightenGAN的启发下,提出了一种新的基于无监督学习全局和局部特征建模的低光照图像增强网络(Low-light Image Enhancement Network Based on Unsupervised Learning Global and Local Feature Modeling Image Enhancement,GLFMIE)。该网络分为两个阶段:生成网络和判别网络。生成网络包括全局和局部特征建模网络,判别网络包括全局和局部判别网络。在全局特征建模中创新性地引入了Swin-Transformer Block,其移位窗口机制可以以较少的内存消耗对输入图像进行长距离的特征依赖建模,并很好地提取图像颜色、纹理和形状的特征,从而有效地抑制噪声和伪影。在局部特征建模中,设计了一种多尺度图像和特征聚合(Multi-Scale Image and Feature Aggregation,MSIFA)网络,允许在单个U型网内交换来自不同尺度的信息,进一步增强图像特征的表征能力。在多个公共数据集的测试实验中,与已有一些先进低光照图像增强算法相比,该算法均取得了SOTA级别的表现。 Inspired by EnlightenGAN,a new Low-light Image Enhancement Network Based on Unsupervised Learning Global and Local Feature Modeling Image Enhancement(GLFMIE)is proposed.The network is divided into two stages:generator network and dis-criminator network.The generator network includes global and local feature modeling network,and the discriminator network includes global and local discriminator network.Swin-Transformer Block is introduced in global feature modeling.Its shift window mechanism can model a long distance feature dependence of the input image with less memory consumption,and extract the features of image color,tex-ture and shape well,thus effectively suppressing noise and artifacts.In local feature modeling,a Multi-Scale Image and Feature Aggrega-tion(MSIFA)network is designed to allow exchange of information from different scales in a single U-shaped network,further enhan-cing the representation ability of image features.In test experiments of multiple public datasets,compared with some advanced low-light image enhancement algorithms,this algorithm has achieved SOTA level performance.
作者 王英凡 WANG Yingfan(Engineering Research Center of Wideband Wireless Communication Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《无线电通信技术》 2023年第2期357-365,共9页 Radio Communications Technology
基金 江苏省研究生科研与实践创新计划项目(KYCX21_0753)。
关键词 低光照图像增强 Swin-Transformer 全局和局部特征建模 多尺度特征聚合 low-light image Enhancement Swin-Transformer global and local feature modeling multi-scale feature aggregation
  • 相关文献

参考文献2

二级参考文献25

  • 1ABDULLAH-AL-WADUD M, HASANUL KABIR M, ALI AKBER DEWAN M, et al.. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2):593-601.
  • 2YANG F, WU J. An improved image contrast enhancement in multiple-peak images based on histogram equalization[J]. IEEE Conference Publications, 2010, 1:346-349.
  • 3CELIK T, TJAHJADI T. Automatic image equalization and contrast enhancement using gaussian mixture modeling[J]. IEEE Transactions on Image Processing, 2012, 21(1):145-156.
  • 4WELLING P, KIM S H, CHO S B. Brightness preserving contrast enhancement using polynomial histogram amendment. IEEE Soc Design Conference, Jeju Island, Korea, 4-7 November, 2012.
  • 5CHEN H O, KONG N S P, IBRAHIM H. Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Consumer Elevtronics, 2009, 55(4):2072-2087.
  • 6GAN C, YE Z. Brightness preserving histogram equalization with maximum entropy:a variational perspective[J]. IEEE Transactions on Consumer Electronics, 2005, 51(4):1326-1334.
  • 7吴家伟,武春风,庹文波.红外图像实时显示增强系统设计[J].光学精密工程,2009,17(10):2612-2619. 被引量:10
  • 8孙玉胜,白克.基于小波变换与加权滤波的电机红外图像增强[J].液晶与显示,2010,25(3):439-443. 被引量:11
  • 9姜文涛,陈卫东,钱钧,陆阳,贺峻峰,原琦,柴继河,梁红军.基于FPGA的实时图像增强设计[J].应用光学,2010,31(6):965-968. 被引量:3
  • 10吴强,王新赛,贺明,王卫平,李志军.一种结合小波分析与直方图的红外图像增强方法[J].应用光学,2011,32(3):464-467. 被引量:22

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部