期刊文献+

一种模糊互模拟的局部算法

A local algorithm of fuzzy bisimulation
下载PDF
导出
摘要 为了快速地对模糊迁移系统中给定状态是否满足互模拟关系进行验证,提出了一种模糊互模拟的局部算法。该算法将验证与遍历相结合,在对状态是否满足模糊互模拟关系验证的同时,动态地增加状态空间,使得算法只需遍历部分状态空间即可完成验证。在部分情况下,尤其是当2个状态不满足模糊互模拟关系时,模糊互模拟的局部算法可以更快地对给定状态是否满足模糊互模拟关系进行验证。通过Java实现了模糊互模拟的局部算法和已有全局算法,并进行了比较实验。实验结果表明,在给定状态对不满足互模拟关系的情况下,本算法比现有模糊互模拟的全局算法的效率更高。 In order to verify whether the given states satisfiy the bisimulation,a local algorithm of fuzzy bisimulation is proposed.The algorithm takes verification and traversal at the same.While verify the given states whether satisfiy the fuzzy bisimulation,the state space is dynamically increased,so that the algorithm only needs to traverse part of the state space to complete the verification.In some cases,the local algorithm of fuzzy bisimulation can verify whether the given states satisfiy the fuzzy bisimulation more quickly,especially when the two states do not satisfy the fuzzy bisimulation.The local algorithm and the existing global algorithm are implemented by Java and compared by experiments.The experiments,shows that this algorithm is more efficient than the existing global fuzzy bisimulation algorithm when the given states do not satisfiy the bisimulation.
作者 胡晋玮 钱俊彦 HU Jinwei;QIAN Junyan(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2023年第1期35-40,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61562015) 广西自然科学基金(2018GXNSFDA138003)。
关键词 互模拟 模糊集 模糊迁移系统 模糊互模拟 局部算法 bisimulation fuzzy set fuzzy transition systems fuzzy bisimulation local algorithm
  • 相关文献

参考文献3

二级参考文献19

  • 1Blom S, Orzan S. A distributed algorithm for strong bisimulation redection of state spaces[J]. Electronic Notes in Theoretical Computer Science, 2002,68 (4).
  • 2Aceto L, Ingolfsdottir A. A characterization of finitary bisimulation[J]. Information Processing Letters, 1997,64:127-134.
  • 3Baier C, Hermanns H, Katoen J-P, Wolf V. Bisimulation and simulation relations for Markov chains[J]. Eledtronic Notes in Theoretical Computer Science, 2006,162: 73- 78.
  • 4Haghverdi E, Tabuada P, Pappas G J. Bisimulation relations for dynamical, control,and hybrid systems[J]. Theoretical Computer Science, 2005,342 : 229-261.
  • 5Haghverdi E, Tabuada P, Pappas G. Bisimulation relations for dynamical and control systems[J]. Electronic Notes in Theoretical Computer Science, 2003,69.
  • 6Andova S, et al, Branching bisimulation for probabilistic systems: characteristics.and decidability [J]. Theoretical Computer Science, 2006,356 : 325- 355.
  • 7Buchholz P. Bisimulation relations for weighted automata[J]. Theoretical Computer Science, 2008,393 : 109- 123.
  • 8Tabuada P. Controller synthesis for bisimulation equivalence[J]. System and Control Letters,in press.
  • 9Petkovie T. Congruence and homomorphisms of fuzzy automata[J]. Fuzzy Sets and Systems,2006,157:444-458.
  • 10Eloranta J, Tienari M, Valmari A. Essential transitions to bisimulation equivalences[J]. Theoretical Computer Science, 1997,179 : 397-419.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部