期刊文献+

Differentiation and functional connectivity of fetal tectal transplants

下载PDF
导出
摘要 Data from studies analyzing the differentiation and functional connectivity of embryo nic neural tissue grafted into the mammalian nervous system has led to the clinical testing of the fetal graft approach in patients with neurodegenerative disease.While some success has been achieved,ethical concerns have led to a search for alternative therapeutic strategies,mostly exploring the use of neural precursors or neurons derived from pluripotent stem cells to replace damaged host neurons and restore lost circuitries.These more recent studies address questions of graft viability,differentiation,and connectivity similar to those posed by researchers in earlier fetal transplant work,thus reviews of the fetal graft literature may inform and help guide ongoing research in the stem cell/organoid field.This brief review describes some key observations from research into the transplantation of neural tissue into the rat visual syste m,focusing on grafts of the fetal supe rior colliculus(tectal grafts) into neonatal or adult hosts.In neonate hosts,grafts quickly develop connections with the underlying host mid b rain and attain a morphology typical of mature grafts by about 2 weeks.G rafts consistently contain numerous localized regions which,based on neurofibrillar staining,neuronal morphology(Golgi),neurochemistry,receptor expression,and glial architecture,are homologous to the stratum griseum supe rficiale of normal superior colliculus.These localized "patches" are also seen after explant culture and when donor tectal tissue is dissociated and reaggregated prior to transplantation.In almost all circumstances,host retinal innervation is restricted to these localized patches,but only those that are located adjacent to the graft surfa ce.Synapses are formed and there is evidence of functional drive.The only exception occurs when Schwann cells are added to dissociated tecta prior to reaggregation.In these co-grafts,the peripheral glia appear to compete with local target fa ctors and host retinal ingrowth is more widespread.Other afferent systems(e.g.,host co rtex,serotonin) show different patterns of innervation.The host cortical input originates more from extrastriate regions and establishes functional excitato ry synapses with grafted neurons.Finally,when grafted into optic tra ct lesions in adult rat hosts,spontaneously regrowing host retinal axons retain the capacity to selectively innervate the localized patches in embryonic tectal grafts,showing that the specific affinities between adult retinal axons and their targets are not lost during regeneration.While the research described here provides some pertinent information about development and plasticity in visual pathways,a more general aim is to highlight how the review of the extensive fetal graft lite rature may aid in an appreciation of the positive(and negative) fa ctors that influence survival,differentiation,connectivity and functionality of engineered cells and organoids transplanted into the central nervous system.
作者 Alan R.Harvey
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2325-2331,共7页 中国神经再生研究(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部