期刊文献+

基于混合卷积神经网络算法的风场预测研究

Wind Field Prediction Based on Hybrid Convolutional Neural Network Algorithm
下载PDF
导出
摘要 在农业生产中,准确的风速预报对农作物安全防范有着至关重要的作用。针对云南地区的高海拔和多山,基于卷积神经网络框架,提出了卷积长短时序分析神经网络-卷积门控循环单元神经网络(ConvLSTM-ConvGRU)混合风速预测模型。通过神经网络框架的改进,有效的提高了模型对风场空间特征的提取。利用美国国家环境预报中心(NCEP)提供的再分析风速数据集,使用ConvLSTM、ConvGRU、ConvLSTM-ConvGRU混合模型分别对云南地区的风速进行。实验结果表明:ConvLSTM-ConvGRU混合风速预测模型能够有效对云南地区风场进行预测,相较于另外两个模型提高了预测准确度。 In agricultural production,accurate wind speed forecasts are crucial to crop safety precautions.Based on the convolutional neural network framework,a ConvLSTM-ConvGRU hybrid wind speed prediction model is proposed for the high altitude and mountainous nature of Yunnan.Through the improvement of the neural network framework,the extraction of the spatial features of the wind farm by the model is improved.Using the reanalyzed wind speed dataset provided by the National Environmental Forecasting Center of the United States,the wind speed prediction of Yunnan region was carried out using the ConvLSTM,ConvGRU,and ConvLSTM-ConvGRU hybrid models.Experimental results show that the ConvLSTM-ConvGRU hybrid wind speed prediction model can effectively predict the wind field in Yunnan,and improve the prediction accuracy compared with the other two models.
作者 石峰 刘向阳 SHI Feng;LIU Xiang-yang(College of science,Hohai University,Nanjing,Jiangsu 211100,China)
机构地区 河海大学理学院
出处 《计算技术与自动化》 2023年第1期129-133,共5页 Computing Technology and Automation
基金 云南省重大科技专项计划项目(202002AE090010)。
关键词 卷积长短时序分析神经网络 卷积门控循环单元神经网络 风速预测 时空特征 ConvLSTM ConvGRU wind speed prediction space-time features
  • 相关文献

参考文献9

二级参考文献95

  • 1Gang MU,Mao YANG,Dong WANG,Gangui YAN,Yue QI.Spatial dispersion of wind speeds and its influence on the forecasting error of wind power in a wind farm[J].Journal of Modern Power Systems and Clean Energy,2016,4(2):265-274. 被引量:13
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 4Robin Girard,Denis Allard.Spatio‐temporal propagation of wind power prediction errors[J].Wind Energ.2013(7)
  • 5Yu-Ting Wu,Fernando Porté-Agel.Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects[J].Boundary-Layer Meteorology.2013(2)
  • 6Aoife M. Foley,Paul G. Leahy,Antonino Marvuglia,Eamon J. McKeogh.Current methods and advances in forecasting of wind power generation[J].Renewable Energy.2011(1)
  • 7M.S. Adaramola,P.-?. Krogstad.Experimental investigation of wake effects on wind turbine performance[J].Renewable Energy.2011(8)
  • 8Maryam Soleimanzadeh,Rafael Wisniewski.Controller design for a wind farm, considering both power and load aspects[J].Mechatronics.2011(4)
  • 9JulijaTastu,PierrePinson,EwelinaKotwa,HenrikMadsen,Henrik Aa.Nielsen.Spatio‐temporal analysis and modeling of short‐term wind power forecast errors[J].Wind Energ.2011(1)
  • 10Ahmet Duran Sahin,Zekai Sen.Wind energy directional spatial correlation functions and application for prediction[J].Wind Engineering.2009(3)

共引文献439

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部