期刊文献+

基于深度学习的害虫图像识别与分类方法研究 被引量:2

Research on Recognition and Classification Method of Pest Images Based on Deep Learning
下载PDF
导出
摘要 害虫侵扰一直是农业生产中回避不了的问题,每年都会造成巨大的经济损失。为了能够有效地预防和控制病虫害问题,需要实现对农田害虫的快速、准确识别,对此提出了一种基于深度学习的农田害虫识别方法,可按照害虫特征区分二化螟、白背飞虱、褐飞虱属、八点灰灯蛾、蟋蟀等多种害虫类别。一阶段对害虫数据集进行分析校正,加入图像整理、剪切等操作,合理划分数据集,添加一系列数据增强处理,进行农田害虫的训练检测。二阶段为增加数据集规模,使用EfficientNet网络对未标注图片进行识别分类,得到伪标签后继续半监督学习。最后,将分类的验证集和训练集合并,做进一步训练加强。实验结果表明,该模型对相关害虫识别效率高,识别效果好,可移植性强,可为农作物害虫的高效快速检测提供参考。 Pest infestation has always been an unavoidable problem in agricultural production,which causes huge economic losses every year.In order to effectively prevent and control diseases and insect pests,it is necessary to realize the rapid and accurate identification of farmland pests.For this,a deep learning-based farmland pest identification method is proposed.According to the characteristics of the pests,a variety of pest categories can be screened out,such as Dillite borer,white-backed planthopper,brown planthopper,eight-pointed gray light moth,cricket and so on.In the first stage,the pest data set is analyzed and corrected,and operations such as image sorting and cutting are added,the data set is divided reasonably,and a series of data enhancement processing is added to conduct training and detection of farmland pests.In the second stage,to increase the scale of the dataset,use the EfficientNet network to identify and classify unlabeled pictures,and continue semi-supervised learning after obtaining pseudo labels.Finally,the classified validation set and training set are merged for further training enhancement.The experimental results show that the model has high identification efficiency for related pests,good identification effect and strong portability,which can provide a reference for efficient and rapid detection of crop pests.
作者 吴杰 施磊 张志安 WU Jie;SHI Lei;ZHANG Zhi-an(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China;School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China)
出处 《计算技术与自动化》 2023年第1期166-173,共8页 Computing Technology and Automation
关键词 深度学习 YOLOv5 图像处理 分类检测 deep learning YOLOv5 image processing classification detection
  • 相关文献

参考文献4

二级参考文献39

  • 1傅隆生,宋珍珍,Zhang Xin,李瑞,王东,崔永杰.深度学习方法在农业信息中的研究进展与应用现状[J].中国农业大学学报,2020,25(2):105-120. 被引量:52
  • 2何胜美,李仲来,何中虎.基于图像识别的小麦品种分类研究[J].中国农业科学,2005,38(9):1869-1875. 被引量:54
  • 3王志军,丛培盛,周佳璐,朱仲良.基于图像处理与人工神经网络的小麦颗粒外观品质评价方法[J].农业工程学报,2007,23(1):158-161. 被引量:29
  • 4BUADES A,COLL B,MOREL J M. A non-local algorithm for image denoising[A].2005.60-65.
  • 5BUADES A,COLL B,MOREL J M. A review of image denoising algorithms,with a new one[J].Multiscale Modeling Simulation,2005,(02):490-530.
  • 6ZHANG L,DONG W,ZHANG D. Two-stage image denoising by principal component analysis with local pixel grouping Pattern Recognition[J].{H}Pattern Recognition,2010,(04):1531-1549.
  • 7AJIT R,ANAND R,ARUNAVA B. Image denoising using the higher order singular value decomposition[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,(04):849-962.
  • 8KERVRANN C,BOULANGER J. Optimal spatial adaptation for patch-based image denoising[J].{H}IEEE Transactions on Image Processing,2006,(10):2866-2878.doi:10.1109/TIP.2006.877529.
  • 9DABOV K,FOI A,EGIAZARIAN K. Video denoising by sparse 3d transform-domain collaborative filtering[A].2007.
  • 10AHARON M,ELAD M,BRUCKSTEIN K. K-SVD:An algorithm for designing overcompletes dictionaries for sparse representation[J].IEEE Transactions on Signal Process,2006,(11):4311-4322.

共引文献39

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部