期刊文献+

基于VMD和改进CNN的舰船辐射噪声识别方法 被引量:2

Recognition method of ship radiated noise based on VMD and improved CNN
下载PDF
导出
摘要 针对海上低信噪比舰船目标的识别问题,对传统卷积神经网络进行改进并与变分模态分解相结合,提出了基于VMD和改进CNN的舰船辐射噪声识别方法。应用所提方法对东海试验中12艘辐射噪声信噪比低于5 dB的舰船目标进行了识别,平均正确率为98.6%;相比于其他7种识别方法,分别提升了24.8%、17.0%、15.1%、8.0%、13.1%、16.8%、5.2%;改进卷积网络较传统卷积网络在运算量和识别速率方面有明显优势。 Here, aiming at the problem of ship target recognition with low signal-to-noise ratio(SNR) at sea, the traditional convolutional neural network(CNN) was improved and combined with the variational mode decomposition(VMD), a ship radiated noise recognition method based on VMD and improved CNN was proposed. The proposed method was applied to identify 12 ships with radiated noise SNR lower than 5 dB in the east China sea tests. The results showed that the average recognition accuracy of the proposed method is 98.6%;compared with the other 7 recognition methods, the recognition accuracy of the proposed method increases by 24.8%, 17.0%, 15.1%, 8.0%, 13.1%, 16.8% and 5.2%, respectively;compared with traditional CNN, the improved CNN has obvious advantages in computation amount and recognition rate.
作者 倪俊帅 胡长青 赵梅 NI Junshuai;HU Changqing;ZHAO Mei(Donghai Research Station,Institute of Acoustics,Chinese Academy of Sciences,Shanghai 201815,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第5期74-82,共9页 Journal of Vibration and Shock
基金 中国科学院声学研究所自主部署项目资助。
关键词 舰船辐射噪声 变分模态分解(VMD) 卷积神经网络(CNN) 识别 ship radiated noise variational mode decomposition(VMD) convolutional neural network(CNN) recognition
  • 相关文献

参考文献9

二级参考文献51

  • 1陈凤林,林正青,彭圆,牟林,张凤珍,王磊.舰船辐射噪声的高阶统计量特征提取及特征压缩[J].应用声学,2010,29(6):466-470. 被引量:7
  • 2田杰,张春华,刘维,黄海宁,薛山花.基于倒谱分析的被动水声目标分类[J].系统工程与电子技术,2005,27(10):1708-1710. 被引量:9
  • 3侯威,封国林,董文杰,李建平.利用排列熵检测近40年华北地区气温突变的研究[J].物理学报,2006,55(5):2663-2668. 被引量:44
  • 4张民,王向军,方兴.一种新的舰船辐射噪声特征提取方法[J].国防科技大学学报,2007,29(3):89-92. 被引量:2
  • 5张岩. 多元统计分析在舰船辐射噪声分类识别中的应用[D].北京:中国科学院声学研究所, 2007.
  • 6章新华,王骥程,林良骥. 基于小波变换的舰船辐射噪声特征提取[J]. 声学学报, 1997, 22(2): 139-144.
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Royal Society of London Proceedings, 1998, 1971 (454): 903-995.
  • 8Roveri N, Carcaterra A. Damage detection in structures undertraveling loads by Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2012, 28(2): 128- 144.
  • 9Yang Hong, Li Guo-hui. Research of noise reduction of chaotic signal based on empirical mode decomposition[J]. Telkomnika, 2014, 12(3): 1881-1886.
  • 10Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London A, 2004, 2046 (460): 1597-1611.

共引文献78

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部