期刊文献+

航空推进系统气动安全阀结构参数分析及优化

Structural parameter analysis and optimization of pneumatic safety valve in aviation propulsion system
下载PDF
导出
摘要 为改善某型航空推进系统气动安全阀的性能,建立航空推进系统双级气体减压器和安全阀组成的高压气路AMESim数值模型,搭建安全阀性能测试试验台,验证模型准确性,分析结构参数对安全阀特性的影响机制。采用响应曲面法(RSM),建立结构参数与安全阀压力超调量和响应时间的显著不失拟回归模型,通过方差分析(ANOVA)研究结构参数交互作用对安全阀压力超调量和响应时间影响的显著性差异,并基于自适应范围多目标遗传算法(ARMOGA),优化入口长度、入口直径和弹簧刚度参数。研究结果表明:入口长度、入口直径、弹簧刚度对超调量和响应时间的影响依次降低,入口长度与直径的交互作用最为显著;入口长度、入口直径、弹簧刚度分别为14.5878 mm、14.8980 mm、48.9668 N/mm时安全阀性能最佳,优化后超调量降低6.917%,响应时间降低6.383%。 In order to improve the working performance of the pneumatic safety valve for aviation propulsion system,the AMESim numerical model of the high⁃pressure gas line of a double⁃stage gas pressure reducer and a safety valve was established.A safety valve test performance experimental bench was built to verify the accuracy of the model,and the influence law of structural parameters on the characteristics of the safety valve was studied.A significant regression model of structural parameters and safety valve pressure overshoot and response time was established using response surface methodology(RSM).The significant differences in the effects of structural parameter interactions on safety valve pressure overshoot and response time were investigated using Analysis of Variance(ANOVA).The parameters of inlet length,inlet diameter and spring stiffness were optimized based on an Adaptive Range Multi⁃objective Genetic Algorithm(ARMOGA).The results of the study show that the influence of inlet length,inlet diameter,and spring stiffness on overshoot and response time decreases in descending order,with the interaction between inlet length and diameter being the most significant.The best performance of the safety valve is achieved when the inlet length,inlet diameter and spring stiffness are 14.5878 mm,14.8980 mm and 48.9668 N/mm,respectively,and the optimized overshoot is reduced by 6.917% and the response time is reduced by 6.383%.
作者 王慧 周国强 王禹涧 岳星岐 张一鸣 WANG Hui;ZHOU Guoqiang;WANG Yujian;YUE Xingqi;ZHANG Yiming(School of Mechanical Engineering,Liaoning Technical University,Fuxin Liaoning 12300,China;Shenyang Aerospace Xinguang Group Co.Ltd.,Shenyang Liaoning 110000,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期48-58,共11页 China Safety Science Journal
基金 国家自然科学基金资助(52204169) 辽宁工程技术大学博士启动基金资助(21-1024)。
关键词 航空推进系统 气动安全阀 结构参数 超调量和响应时间 多目标优化 aviation propulsion system pneumatic safety valve structural parameters overshoot and response time multi⁃objective optimization
  • 相关文献

参考文献14

二级参考文献141

  • 1李斌,谭永华.液氧/煤油富氧补燃发动机[J].火箭推进,2003,29(2):1-6. 被引量:5
  • 2刘晓光,胡静涛,高雷,李逃昌,白晓平.基于改进小波阈值的微机械陀螺去噪方法[J].中国惯性技术学报,2014,12(2):233-236. 被引量:31
  • 3王泽清.安全阀的特性曲线及试验[J].阀门,2005(1):11-13. 被引量:4
  • 4李东.长征火箭的现状及展望[J].科技导报,2006,24(3):57-63. 被引量:10
  • 5周国发,邱靖宇,吴泽炜.安全阀排量系数分析研究[J].压力容器,1997,14(2):4-8. 被引量:12
  • 6Avtar Singh, Arthur M. Hecht, Milton E. Teske. A Model for Predicting the Performance of Spring - Loaded Safety Valves[ R]. 82 - WA/NE - 12. New York: ASME, 1982.
  • 7Avtar Singh. An Analytical Study of the Dynamics and Stability of a Spring Loaded Safety Valve[ J]. Nuclear Engineering and Design, 1982,72 (3) : 197 -204.
  • 8Francis J, Betts P L. Modelling Incompressible Flow in a Pressure Relief Valve[ A]. Proceedings of the In- stitution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering[C]. 1997, 211(2) : 83-93.
  • 9Bilanin A J, Teske M E. Modeling Flow Through Spring-Loaded Safety Valves [ A ]. Nashville: ASME PVP Conference[ C]. 1990.29-36.
  • 10Bernhard Fllmer, Anldn Schnettler. Challengers in Designing API Safety Belief Valves [ J I. Valve World, 2003, October :25-31.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部