期刊文献+

MEEMD-DBA-based short term traffic flow prediction

下载PDF
导出
摘要 Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and low accuracy of traffic flow prediction,a traffic flow prediction model based on modified ensemble empirical mode decomposition(MEEMD),double-layer bidirectional long-short term memory(DBiLSTM)and attention mechanism is proposed.Firstly,the intrinsic mode functions(IMFs)and residual components(Res)are obtained by using MEEMD algorithm to decompose the original traffic data and separate the noise in the data.Secondly,the IMFs and Res are put into the DBiLSTM network for training.Finally,the attention mechanism is used to enhance the extraction of data features,then the obtained results are reconstructed and added.The experimental results show that in different scenarios,the MEEMD-DBiLSTM-attention(MEEMD-DBA)model can reduce the data reconstruction error effectively and improve the accuracy of the short-term traffic flow prediction.
作者 张玺君 HAO Jun NIE Shengyuan CUI Yong ZHANG Xijun;HAO Jun;NIE Shengyuan;CUI Yong(College of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,P.R.China)
出处 《High Technology Letters》 EI CAS 2023年第1期41-49,共9页 高技术通讯(英文版)
基金 Supported by the National Natural Science Foundation of China(No.62162040,61966023) the Higher Educational Innovation Foundation Project of Gansu Province of China(No.2021A-028) the Science and Technology Plan of Gansu Province(No.21ZD4GA028).
  • 相关文献

参考文献5

二级参考文献30

  • 1张辉,刘嘉焜,柳湘月,郭晓泽.交通流的季节ARIMA模型与预报[J].天津大学学报(自然科学与工程技术版),2005,38(9):838-841. 被引量:17
  • 2于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
  • 3Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc.Roy.Soc.London,1998,454:903-995.
  • 4Huang N E,Shen Z,Long R S.A new view of nonlinear water waves-the Hilbert spectrum,Ann.Rev.Fluid Mech,1999,31:417-457.
  • 5Huang N E,Wu Z.A review on Hilbert-Huang transform:Method and its applications to geophysical studies,Adv ances in Adaptive Data Analysis 2009,1:1-23.
  • 6Gai G H.The processing of rotor startup signals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.
  • 7Deering R,Kaiser J F.The use of masking signal to improve emprical mode decomposition[C]// IEEE International Conference on Acoustics,Speech,and Signal Processing.Philadelphia,USA,2005,Ⅳ:485-488.
  • 8Wu Z H,Huang N E.Ensemble empirical mode decomposition:A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1:1-41.
  • 9Yeh J R,Shieh J S.Complementary ensemble empirical mode decomposition:A noise enhanced data analysis method[J],Advances in Adaptive Data Analysis,2010,2 (2):135-156.
  • 10Bandt C,Pompe B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,The American Physiological Society,2002:174102 (1-4).

共引文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部