期刊文献+

基于CNN的平波电抗器声纹模式识别方法

A voiceprint pattern recognition method of smoothing reactor based on CNN
下载PDF
导出
摘要 为实现对平波电抗器运行状态的准确识别,引入一种基于CNN(卷积神经网络)的深度学习方法,建立了使用Mel时频谱的电抗器绕组声纹模式识别模型。以干式平波电抗器作为实验对象采集声音信号,使用Mel滤波器方法将采集到的声音信号转化为时频谱图,以不同的工况类型作为数据集的标签,基于CNN算法识别不同信号所对应的工况类型。结果表明,CNN可用于干式平波电抗器声纹模式的准确识别,优化后的神经网络对正弦激励、谐波激励和直流偏磁激励下的声纹信号识别准确率高达98.4%。研究结果为实现电网信号的智能化检测提供了潜在的技术方案。 In order to accurately identify the operating condition of the smoothing reactor,a deep learning method based on CNN(convolutional neural network)is introduced.A voiceprint pattern recognition model for reactor windings using Mel spectrogram is developed.The sound signals are collected using dry smoothing reactors as the experimental object.The Mel filter method is used to convert the collected sound signals into a spectrogram with different working conditions used as the labels of the data set.The CNN algorithm is used to identify the working conditions corresponding to the different signals.The results show that CNN can be used to accurately identify dry voiceprint patterns of smoothing reactors.The optimized neural network can achieve an accuracy of 98.4%in recognition of voiceprint signals under sinusoidal excitation,harmonic excitation and DC bias excitation.The research results provide a potential technical solution for realizing intelligent detection of power grid signals.
作者 胡锦根 石明垒 焦晨骅 沈正元 HU Jingen;SHI Minglei;JIAO Chenhua;SHEN Zhengyuan(Department of Operation&Maintenance,EHV Branch Company of State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310007,China)
出处 《浙江电力》 2023年第3期88-94,共7页 Zhejiang Electric Power
基金 国网浙江省电力有限公司科技项目(5211MR20004U)。
关键词 平波电抗器 运行状态 绕组 Mel时频谱 卷积神经网络 smoothing reactor operating condition winding Mel spectrogram convolutional neural network
  • 相关文献

参考文献6

二级参考文献122

  • 1王涛,李艾华,王旭平,蔡艳平.基于SVDD与距离测度的齿轮泵故障诊断方法研究[J].振动与冲击,2013,32(11):62-65. 被引量:9
  • 2汲胜昌,程锦,李彦明.油浸式电力变压器绕组与铁心振动特性研究[J].西安交通大学学报,2005,39(6):616-619. 被引量:96
  • 3陈秋,李振海.变电站噪声防治方案研究[J].电力环境保护,2006,22(3):49-51. 被引量:42
  • 4牛刚,何强,黄健群,王军.基于Mel刻度短时能量差的语音活性检测算法[J].声学与电子工程,2006(4):29-31. 被引量:2
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 6HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 7LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 8HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 9KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 10GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.

共引文献751

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部