期刊文献+

分数阶多延迟抛物方程不同差分格式的分析

Discussion and analysis of different finite difference schemes for fractional multidelay parabolic equations
下载PDF
导出
摘要 为获得分数阶多延迟抛物方程精确的解析表达式及其数值解,结合分数阶微积分的定义和数值方法,对分数阶多延迟抛物方程构造一类线性化的Crank-Nicolson差分格式和紧致差分格式.通过数值算例对差分格式的可解性、稳定性和收敛性进行验证.结果表明,该分数阶多延迟抛物方程的Crank-Nicolson差分格式和紧致差分格式具有良好的精确性和有效性. In order to obtain the exact analytical expression and numerical solution of the fractional multidelay parabolic equation,a class of linearized Crank-Nicolson and compact difference schemes were constructed by combining the definition and numerical method of fractional calculus.Numerical examples are given to verify the resolvable,stability and convergence of the difference scheme.The results show that the Crank-Nicolson difference scheme and the compact difference scheme are accuracy and validity.
作者 石红芳 SHI Hongfang(Department of Mathematics,Zibo Normal College,Zibo Shandong 255130)
出处 《宁夏师范学院学报》 2023年第1期13-24,共12页 Journal of Ningxia Normal University
基金 山东省教育教学研究课题(2021JXY099).
关键词 抛物方程 分数阶 Crank-Nicolson差分 紧致差分 Parabolic equation Fractional order Crank-Nicolson Scheme Compact finite difference Scheme
  • 相关文献

参考文献4

二级参考文献21

  • 1刘明珠,闫达文.θ-方法对分段连续型延迟微分方程的渐进稳定性[J].黑龙江大学自然科学学报,2005,22(2):158-162. 被引量:2
  • 2Cafagna D.Past and present-fractional calculus:A mathematical tool from the past for present engineers[J].IEEE Industrial Electronics Magazine,2007,2(1):35-40.
  • 3Ma C,Hori Y.Fractional-order control:theory and applications in motion control:past and present[J].IEEE Industrial Electronics Magazine,2007,1(4):6-16.
  • 4Ortigueira M D.An introduction to the fractional continuous time linear systems:The 21st century systems[J].IEEE Circuits and Systems Magazine,2008,8(3):19-26.
  • 5West B J.Colloquium:Fractional calculus view of complexity:A tutorial[J].Reviews of Modern Physics,2014,86(4):1169.
  • 6Diethelm K.The Analysis of Fractional Differential Equations--An application-oriented exposition using differential operators of Caputo type[M].New York:Springer,Lecture Notes in Mathematics,2010.
  • 7Podlubny I.Fractional differential equations:an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].San Diego:Academic press,1998.
  • 8Kilbas A A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterda:Elsevier Science B V,2006.
  • 9West B J.Fractional Calculus View of Complexity:Tomorrow′s Science[M].Florida:CRC Press,2015.
  • 10胡琳,甘四清,李文皓.分段连续型延迟Logistic方程数值解的稳定性[J].黑龙江大学自然科学学报,2010,27(1):30-33. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部