期刊文献+

NaLu(WO_(4))_(2):xEu^(3+)荧光粉中Tb^(3+)高掺杂诱导的能量转移及LED应用

LED application and energy transfer induced by high Tb^(3+) doping of NaLu(WO_(4))_(2):xEu^(3+)phosphors
下载PDF
导出
摘要 采用水热法制备了掺杂浓度不同的NaLu_(1-x-y)Tb_(y)(WO_(4))_(2):xEu^(3+)系列荧光粉.利用XRD、SEM、激发光谱、发射光谱、时域光谱等手段研究了荧光粉的晶体结构、颗粒形貌和光谱学属性.结果表明,与未掺杂Tb^(3+)的最优荧光粉相比,NaLu_(0.50_Tb_(0.41)(WO_(4))_(2):0.09Eu^(3+)荧光粉实现了一个量级以上的荧光增强,该增强主要归因于先Eu^(3+)→Tb^(3+)后Tb^(3+)→Eu^(3+)的两步能量转移.利用395 nm紫外芯片和发光最强荧光粉封装的红光LED在植物补光领域具备较好的应用前景. NaLu_(1-x-y)Tb_(y)(WO_(4))_(2)∶xEu^(3+)series phosphors with different doping concentrations were prepared by hydrothermal method.The crystal structure,morphology and spectroscopic properties of the phosphors were explored by XRD,SEM,excitation spectroscopy,emission spectroscopy and time-domain spectroscopy.The results show that the emission intensity of NaLu_(0.50)Tb_(0.41)(WO_(4))_(2)∶0.09 Eu^(3+)phosphor was ten times stronger than that for the optimal phosphor without Tb^(3+).The remarkable enhancement was mainly attributed to the successive energy transfer of Eu^(3+)→Tb^(3+)and Tb^(3+)→Eu^(3+).The red LED packaged with 395 nm ultraviolet chip and the NaLu_(0.50)Tb_(0.41)(WO_(4))_(2)∶0.09 Eu^(3+)phosphor will present a great potential in plant supplementary lighting field.
作者 程悦 武亚奇 崔银康 郑标 何恩节 刘念 CHENG Yue;WU Yaqi;CUI Yinkang;ZHENG Biao;HE Enjie;LIU Nian(College of Mechanical Engineering,Anhui Science and Technology University,Chuzhou Anhui 233100;College of Information and Engineering,Anhui Science and Technology University,Bengbu Anhui 233030;College of Electrical and Electronic Engineering,Anhui Science and Technology University,Bengbu Anhui 233030)
出处 《宁夏师范学院学报》 2023年第1期50-56,共7页 Journal of Ningxia Normal University
基金 安徽高校自然科学研究重大项目(KJ2021ZD0109) 2021年安徽科技学院学术和技术带头人后备人选项目(校人[2021]77号)。
关键词 水热法 双钨酸盐 能量转移 LED封装 Hydrothermal method Double tungstate Energy transfer LED packaging
  • 相关文献

参考文献1

二级参考文献26

  • 1Wei Z G, Sun L D, Liao C S and Yan C H 2002 Appl. Phys. Lett. 80 1447.
  • 2Zhang P, Rogelj S, Nguyen K and Wheeler D 2006 J. Am. Chem. Soc. 128 12410-1.
  • 3Lim S F, Riehn R, Ryu W S, Khanarian N, Tung C, Tank D and Austin R H 2006 Nano. Lett. 6 169.
  • 4Meng Q Y, Chen B J, Xu W, Yang Y M, Zhao X X, Di W H, Lu S Z, Wang X J, Sun J S, Cheng L H, Yu T and Peng Y 2007 J. Appl. Phys. 102 093505-1.
  • 5Yan C H, Sun L D, Liao C S, Zhang Y X, Lu Y Q, Huang S H and Lu S Z 2003 Appl. Phys. Lett. 82 3511.
  • 6Gao X, Song X W, Guo K M, Tao H Y and Lin J Q 2011 Acta Phys. Sin. 60 025203 (in Chinese).
  • 7Liu Z J, Yang L Y, Dai N L and Li J Y 2011 Acta Phys. Sin. 60 697 (in Chinese).
  • 8Li T G, Liu S W, Wang E H and Song L J 2011 Acta Phys. Sin. 60 073201 (in Chinese).
  • 9Zhou S H, Fu Z L, Zhang J J and Zhang S Y 2006 J. Lumin. 118 179.
  • 10Haase M, Riwotzki K, Meyssamy H and Kornowski A 2000 J. Alloys. Compd. 303--304 191.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部