摘要
为了解决深度图神经网络中存在的过平滑问题,提出一种基于子图划分的多尺度节点分类方法。该方法以Graph-Inception网络结构为核心,采用一种基于子图划分的数据预处理方法,通过改变图中的网络结构,优化特征聚集方式,有效地抑制了冗余搜索带来的过平滑问题;利用不同尺寸卷积核的组合来提取目标节点多尺度邻域的特征信息,以实现对图神经网络深度扩展的等效,一定程度上抑制了深层网络结构带来的过平滑问题。实验结果表明,该方法能够有效地抑制图神经网络中出现的过平滑问题,在基准数据集PPI、Reddit和Amazon上的分类准确率都得到了不同程度的提高。
In order to solve the problem of over-smooth in the deep graph neural networks,a multi-scale node classification method based on subgraph partition is proposed.Taking the Graph-Inception as the core,this method used a subgraph partition as a data preprocess method.The network structure in the graph was changed,the method of feature aggregation was optimized,which effectively suppressed the over-smooth caused by redundant features searching.The neighborhood feature information of the target node at multi-scale was extracted through the combination of convolution kernels of different sizes,so as to achieve the equivalent of the depth expansion of the graph neural networks.To a certain extent,the over-smooth problem caused by the deep network structure was suppressed.Experimental results show that the proposed method can effectively suppress the over-smooth problem in graph neural networks,and improve the classification accuracy on the benchmark datasets PPI,Reddit and Amazon to vary degrees.
作者
李浩然
张红梅
Li Haoran;Zhang Hongmei(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)
出处
《计算机应用与软件》
北大核心
2023年第3期281-286,共6页
Computer Applications and Software
基金
国家自然科学基金项目(61461010)
“认知无线电与信息处理”省部共建教育部重点实验室基金项目(CRKL170103,CRKL170104)
广西教育大数据与网络安全协同创新中心项目
广西自然科学基金重点项目(2020GXNSFDA238001)。
关键词
子图划分
多尺度
图神经网络
节点分类
Subgraph partition
Multi-scale
Graph neural networks
Node classification