期刊文献+

基于卷积神经网络的现场勘查照片分类方法 被引量:1

Method for Classifying Crime Scene Photographs Based on Convolution Neural Network
原文传递
导出
摘要 随着人工智能技术的迅速发展与广泛应用,智能化勘查方法正成为刑事科学技术领域新的研究热点,而实现现场勘查照片自动识别与分类是智能化勘查的重要研究内容。面向公安机关实战应用需求,提出了一种基于卷积神经网络的现场勘查照片自动分类算法。基于真实案件照片,建立了现场勘查照片数据集,包含现场勘查照片13164张,负类照片4008张。根据现场勘查照片数据特性,设计了现场勘查照片分类网络(CriSNet),通过对卷积层增加归一化处理以及改进bottleneck模块,实现对现场勘查照片的精确分类。实验结果表明:CriSNet模型的分类精度优于基准网络1个百分点,具有较好的鲁棒性,同时在分辨率低、品质较差的情况下,仍能保持较好的分类性能。 With the rapid development and wide application of artificial intelligence,intelligent investigation is becoming a new research hotspot in forensic science,and the realization of automatic recognition and classification of crime scene photographs is an essential aspect of intelligent investigations.We present an algorithm that automatically classifies crime scene photographs based on a convolution neural network.First,based on the data from criminal cases,a crime scene photograph dataset was constructed comprising 13164 scene photographs and 4008 negative photographs.Second,crime scene photograph net(CriSNet)was designed based on the data characteristics to accurately classify crime scene photographs by adding normalization processing to the convolution layer and improving the bottleneck module.The experimental results show that the accuracy of CriSNet is 1 percentage point better than that of the benchmark with good robustness,and CriSNet can still maintain excellent performance under low resolution and poorquality conditions.
作者 李卓容 唐云祁 蔡能斌 Li Zhuorong;Tang Yunqi;Cai Nengbin(School of Criminal Investigation,People’s Public Security University of China,Beijing 100038,China;Shanghai Key Laboratory of Crime Scene Evidence,Shanghai 200083,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第4期130-139,共10页 Laser & Optoelectronics Progress
基金 公安部技术研究计划项目(2020JSYJC21) 中央高校基本科研业务费项目(2021JKF203) 上海市现场物证重点实验室开放课题基金(2021XCWZK04)。
关键词 图像处理 卷积神经网络 现场勘查照片 图像分类 image processing convolution neural network crime scene photo image classification
  • 相关文献

参考文献13

二级参考文献78

共引文献95

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部