期刊文献+

Self-optimized single-nanowire photoluminescence thermometry 被引量:1

原文传递
导出
摘要 Nanomaterials-based photoluminescence thermometry(PLT)is a new contact-free photonic approach for temperature sensing,important for applications ranging from quantum technology to biomedical imaging and diagnostics.Even though numerous new materials have been explored,great challenges and deficiencies remain that hamper many applications.In contrast to most of the existing approaches that use large ensembles of rare-earth-doped nanomaterials with large volumes and unavoidable inhomogeneity,we demonstrate the ultimate size reduction and simplicity of PLT by using only a single erbium-chloride-silicate(ECS)nanowire.Importantly,we propose and demonstrate a novel strategy that contains a self-optimization or "smart"procedure to automatically identify the best PL intensity ratio for temperature sensing.The automated procedure is used to self-optimize key sensing metrics,such as sensitivity,precision,or resolution to achieve an all-around superior PLT including several record-setting metrics including the first sensitivity exceeding 100%K^(-1)(~138%K^(-1)),the highest resolution of 0.01 K,and the largest range of sensible temperatures 4-500 K operating completely within 1500-1800 nm(an important biological window).The high-quality ECS nanowire enables the use of well-resolved Stark-sublevels to construct a series of PL intensity ratios for optimization in infrared,allowing the completely Boltzmann-based sensing at cryogenic temperature for the frst time.Our single-nanowire PLT and the proposed optimization strategy overcome many existing challenges and could fundamentally impact PL nano-thermometry and related applications such as single-cell thermometry.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2023年第2期259-271,共13页 光(科学与应用)(英文版)
基金 The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.91750206,61861136006,and 61975252) Beijing Innovation Center for Future Chips,Tsinghua University Initiative Scientific Research Program(No.20141081296).
  • 相关文献

同被引文献86

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部