期刊文献+

Differentially Private Distributed Parameter Estimation 被引量:2

原文传递
导出
摘要 Data privacy is an important issue in control systems,especially when datasets contain sensitive information about individuals.In this paper,the authors are concerned with the differentially private distributed parameter estimation problem,that is,we estimate an unknown parameter while protecting the sensitive information of each agent.First,the authors propose a distributed stochastic approximation estimation algorithm in the form of the differentially private consensus+innovations(DP-CI),and establish the privacy and convergence property of the proposed algorithm.Specifically,it is shown that the proposed algorithm asymptotically unbiased converges in mean-square to the unknown parameter while differential privacy-preserving holds for finite number of iterations.Then,the exponentially damping step-size and privacy noise for DP-CI algorithm is given.The estimate approximately converges to the unknown parameter with an error proportional to the step-size parameter while differential privacy-preserving holds for all iterations.The tradeoff between accuracy and privacy of the algorithm is effectively shown.Finally,a simulation example is provided to verify the effectiveness of the proposed algorithm.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第1期187-204,共18页 系统科学与复杂性学报(英文版)
基金 supported by the National Key R&D Program of China under Grant No.2018YFA0703800 the National Natural Science Foundation of China under Grant No.61877057 China Post-Doctoral Science Foundation under Grant No.2018M641506.
  • 相关文献

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部