期刊文献+

Least Squares Model Averaging for Two Non-Nested Linear Models

原文传递
导出
摘要 This paper studies the least squares model averaging methods for two non-nested linear models.It is proved that the Mallows model averaging weight of the true model is root-n consistent.Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal.If neither candidate model is true,the penalized Mallows averaging estimator is asymptotically optimal.Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第1期412-432,共21页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.11801598,12031016 and 11971323 the National Statistical Research Program under Grant No.2018LY96 the Beijing Natural Science Foundation under Grant No.1202001 NQI Project under Grant No.2022YFF0609903.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部