期刊文献+

考虑激增需求下前置仓两阶段选址研究 被引量:2

Study on Two-Stage Location of Forebay Considering Surge Demand
原文传递
导出
摘要 [目的]考虑时效、成本、效率等关键词目标下,对激增需求下生鲜电商前置仓的两阶段选址问题进行研究。[方法]首先基于前置仓的配送范围和订单处理量,以生鲜电商企业的利润最大化为目标函数,建立了正常需求与激增需求下的前置仓选址模型,并运用一种基于遗传算法的K-means聚类算法对两阶段选址进行求解。[结果]与以往从备选地址中选择最终地址的研究不同,在本研究中通过直接考虑用户地址和需求情况进行建模求解,验证了改进后的方法的可行性和有效性。[结论]结合需求激增,刻画了需求变化情况下的两阶段选址的动态过程。 [Purposes]In recent years,the pre-warehouse model that can be fully close to customers,flexible,and low in operation and maintenance costs has been favored by fresh food e-commerce companies,and has shown unique advantages especially under the surge in demand such as the epidemic.[Methods]Firstly,based on the distribution range and order processing capacity of the front warehouse,taking the profit maximization of fresh e-commerce enterprises as the objective function,the front warehouse location model under normal demand and surge demand is established,and a k-means clustering algorithm based on genetic algorithm is used to solve the two-stage location.[Findings]Different from the previous selection of the final address from the alternative address,the feasibility and effectiveness of the method were verified by directly considering the user address and demand for modeling solution.[Conclusions]Combined with the demand surge,the dynamic process of two-stage site selection under the situation of demand change is described.
作者 卢汉松 魏海蕊 LU Hansong;WEI Hairui(School of Business,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期73-81,共9页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.71801150)。
关键词 K-MEANS聚类算法 遗传算法 前置仓选址 需求激增 K-means clustering algorithm genetic algorithm location of front warehouse demand surge
  • 相关文献

参考文献9

二级参考文献63

共引文献186

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部