摘要
[目的]提出一种求解昂贵黑箱优化问题的多代理辅助进化算法。[方法]对进化采样辅助优化算法进行改进,将全局搜索中每代的进化操作进行10次,以降低求解的不稳定性;并对全局搜索与局部搜索的转换采用自适应距离准则判断,从而提高求解的精度。[结果]得到了新的昂贵黑箱优化问题的多代理辅助进化算法。[结论]使用22个测试问题对新算法的数值结果进行评估,结果表明新算法与进化采样辅助优化算法相比优势明显。
[Purposes]To propose a multiple surrogates assisted evolutionary algorithm for solving expensive black-box optimization problems.[Methods]The ESAO algorithm is improved by performing 10 generations of evolutionary operations in global search to reduce the instability of the solution,and using the adaptive distance criterion to judge the conversion between the global search and the local search,so as to improve the accuracy of the solution.[Findings]A new multiple surrogates assisted evolutionary algorithm for expensive black-box optimization problems is obtained.[Conclusions]The numerical results of the new algorithm are evaluated by using 22 test problems,and the results show that the new algorithm has significant advantages over the ESAO algorithm.
作者
钟奇
白富生
ZHONG Qi;BAI Fusheng(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331;Chongqing National Center for Applied Mathematics,Chongqing 401331,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2023年第1期95-104,共10页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11991024)
重庆市自然科学基金(No.2022NSCQ-LZX0301)
重庆市教育委员会科学技术研究(No.KJZD-K202114801)。
关键词
昂贵黑箱函数
代理辅助进化算法
径向基函数
expensive black-box optimization
surrogate-assisted evolutionary algorithms
radial basis function