期刊文献+

基于导向滤波和小波变换的红外可见光图像融合改进算法研究

Research on Improved Infrared Visible Light Image Fusion Algorithm Based on Guided Filtering and Wavelet Transform
下载PDF
导出
摘要 针对传统模型在跨模态下易产生光晕伪影、颜色失真等问题,提出一种基于导向滤波和小波变换的红外可见光图像融合改进算法。将源图像经由小波变换获得二维低频及高频的子代系数,低频分量采用加权平均融合,高频分量提取权重图后经导向滤波获得细节增强;再将所处理的各分量经小波逆变换获得融合图像。该算法使用开源数据集TNO检验效果,经过主客观评估,得出该算法的效果明显优于传统算法,符合研究预期。 Aiming at the problem that the traditional model is prone to produce halo artifacts and color distortion in cross-mode,an improved infrared visible light image fusion algorithm based on guided filtering and wavelet transform is proposed.The sub-generation coefficients of two-dimensional low frequency and high frequency are obtained from the source image through wavelet transform.The low frequency components are fused by weighted average,and the high frequency components are extracted from the weight map,and then the details are enhanced by guided filtering;then the processed components are transformed by inverse wavelet transform to obtain the fused image.The algorithm uses the open source data set TNO to test the effect.After subjective and objective evaluation,it is concluded that the effect of the algorithm is significantly better than the traditional algorithm,which is in line with the research expectation.
作者 易图明 王先全 袁威 何晓冬 YI Tuming;WANG Xianquan;YUAN Wei;HE Xiaodong(Southwest Computer Co.,Ltd.,Chongqing 400060,China;Chongqing University of Technology,Chongqing 400054,China)
出处 《现代信息科技》 2023年第6期41-45,共5页 Modern Information Technology
关键词 图像融合 小波变换 导向滤波 多尺度分解 红外可见光图像 image fusion wavelet transform guided filtering multi-scale decomposition infrared visible light image
  • 相关文献

参考文献5

二级参考文献44

  • 1Goshtasby A A,NIkolov S.Image fusion:advances in the state of the art[J ].Inf.Fusion,2007,8(2):114-118.
  • 2Pohl C,Van Genderen J L.Multisensor image fusion in remote se nsing:concepts,methods and applications[J].Int.J.Remote Sens.,1998,19(5):823-854.
  • 3Mitianoudis N,Stathaki T.Pixel-based and region-based image fusion schemes using ICA bases[J].Inf.Fusion,2007,8(2):131-142.
  • 4Rockinger O.Pixel level fusion of image sequences using wavele t frames[C].Proc.16th Leeds Annual Statistical Research Workshop,[C].1996,149-154.
  • 5Chung K L,Yang W J,Yan W M.Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation[J].J.Vis.Commun.Image Represent .,2008,19(5):299-310.
  • 6Chen C, Wang C D.A simple edge-preserving filtering techniq ue for constructing multi-resolution systems of images[J].Pattern Recognit.Lett.,1999,20(5) :495-506.
  • 7Perona P,Malik J.Scale-space and edge dete ction using anisotropic diffusion,IEEE Trans.Pattern Anal.Mach.Intell.,1990,12(7):629-639.
  • 8Tomasi C,Manduchi R.Bilateral filtering for g ray and color images[C].Proc.Int.Conf.on Computer Vision[C].1998,9-846.
  • 9Farbman Z,Fattal R,Lischinski D,et al.Edge-pr eserving decompositions for multi-scale tone and detail manipulation[J].ACM Trans.Graph.,2008,27(3) :1-10.
  • 10Xu L,Lu C,Xu Y,et al.Image smoothing via L0gradient minimization[J].ACM Trans.Graph.,2011,30 (6):174-12.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部