期刊文献+

R_(SC3)K of soybean cv. Kefeng No.1 confers resistance to soybean mosaic virus by interacting with the viral protein P3 被引量:2

原文传递
导出
摘要 Soybean mosaic virus(SMV) is one of the most devastating viral pathogens of soybean(Glycine max(L.) Merr). In total, 22 Chinese SMV strains(SC1–SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMVresistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar(cv.) Kefeng No.1 has been cloned and verified. Here, using F_(2)-derived F_(3)(F_(2:3)) and recombinant inbred line(RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus(BPMV)-induced gene silencing(VIGS). We identified a recombinant gene(which we named R_(SC3)K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene.By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by R_(SC3)K, LOC100526921, and LOC100812666. The recombinant R_(SC3)K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that R_(SC3)K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第3期838-853,共16页 植物学报(英文版)
基金 supported by the National Key R&D Program of China (2021YFD1201604) Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP) the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014) China Agriculture Research System of MOF and MARA (No. CARS-04)。
  • 相关文献

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部