期刊文献+

基于残差网络与注意力机制的脉象信号分析识别

Wrist pulse analysis and recognition based on residual network and attention mechanism
下载PDF
导出
摘要 传统机器学习方法在中医脉象信号分类研究中需要人工提取脉象的特征,且分类准确率不高,因此较难应用于实际环境中。为对脉象信号进行特征的自动提取和精确分类,文中采用改进的一维残差网络对脉象信号进行特征提取并结合改进的注意力机制提高网络的分类性能。所构建的基于一维残差网络与注意力机制模型在单个GTX 1080 GPU上对脉象数据集进行实验,得到的平均准确率、平均召回率、平均精确率、平均F1分数均高于98.84%,在临床病例数据集中,该模型对冠心病分类的平均准确率为100%、平均召回率为99.91%、平均精确率为99.54%、平均F1分数为99.72%。与已有的脉象信号分类模型相比,该模型在脉象数据集上和临床病例数据集上的准确率分别提高1.32%~9.23%和0.21%~3.03%。存储该模型时所需容量不超过10 MB,有利于将其部署在实际脉诊设备上并应用于现实的脉象检测。 Traditional machine learning methods need to extract pulse characteristics manually in pulse classification research,and their classification accuracy is not high,so it is difficult to apply in the actual environment.In order to automatically extract and classify the pulse signal features,a one⁃dimensional residual network is used to extract the features of the pulse signal and the attention mechanism is combined to improve the classification performance of the network.The constructed model based on improved one⁃dimensional residual network and improved attention mechanism was used to test the pulse dataset on a single GTX 1080 GPU,and the average accuracy,average recall rate,average precision rate and average F1 score were all higher than 98.84%.The clinical dataset indicates that the average accuracy of the model for coronary heart disease classification is 100%,its average recall rate is 99.91%,its average precision rate is 99.54%,and its average F1 score is 99.72%.In comparison with the existing pulse classification models,the accuracy of this model on the pulse dataset and the clinical dataset is 1.32%~9.23%and 0.21%~3.03%higher,respectively.When storing the model,the required capacity does not exceed 10 MB,which is beneficial to deploy it on the actual pulse diagnosis equipment to realize the pulse detection.
作者 朱嘉健 冯跃 徐红 林卓胜 梁惠珠 刘慧琳 李福凤 ZHU Jiajian;FENG Yue;XU Hong;LIN Zhuosheng;LIANG Huizhu;LIU Huilin;LI Fufeng(Faculty of Intelligent Manufacturing,Wuyi University,Jiangmen 529020,China;Victoria University,Melbourne 8001,Australia;Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)
出处 《现代电子技术》 2023年第7期57-62,共6页 Modern Electronics Technique
基金 广东省普通高校重点领域专项项目(2021ZDZX1032) 广东省国际及港澳台高端人才交流专项(2020A1313030021) 五邑大学科研项目(2018TP023,2018GR003)。
关键词 中医 脉象分类 机器学习 特征提取 残差网络 注意力机制 traditional Chinese medicine pulse classification machine learning feature extraction residual network attention mechanism
  • 相关文献

参考文献6

二级参考文献52

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部