期刊文献+

A VARIATIONAL ANALYSIS FOR THE MOVING FINITE ELEMENT METHOD FOR GRADIENTFLOWS

原文传递
导出
摘要 By using the Onsager principle as an approximation tool,we give a novel derivation for the moving finite element method for gradient flow equations.We show that the discretized problem has the same energy dissipation structure as the continuous one.This enables us to do numerical analysis for the stationary solution of a nonlinear reaction diffusion equation using the approximation theory of free-knot piecewise polynomials.We show that under certain conditions the solution obtained by the moving finite element method converges to a local minimizer of the total energy when time goes to infinity.The global minimizer,once it is detected by the discrete scheme,approximates the continuous stationary solution in optimal order.Numerical examples for a linear diffusion equation and a nonlinear Allen-Cahn equation are given to verify the analytical results.
作者 Xianmin Xu
出处 《Journal of Computational Mathematics》 SCIE CSCD 2023年第2期191-210,共20页 计算数学(英文)
基金 supported in part by NSFC grants DMS-11971469 the National Key R&D Program of China under Grant 2018YFB0704304 and Grant 2018YFB0704300.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部