摘要
知识图谱方法与技术在人工智能领域有较高价值,其面临的一大难题是现有的知识图谱数据集中存在大量边缺失的现象,知识图谱表示学习为解决这一问题提供了解决方案。表示学习的质量取决于嵌入空间的几何形状与数据结构的匹配程度。欧氏空间一直是知识图谱表示学习的主力,而双曲和球面空间因其能够更好地嵌入新类型的结构数据而逐渐受到关注。但大多数数据的异质度较高,单一空间建模可能会导致信息失真较大。为了解决这个问题,受MuRP模型的启发,提出了用混合曲率空间来提供适合各种异质结构数据的表示,用欧氏、双曲和球面空间的笛卡尔积来构造混合空间;设计了混合空间的图注意力机制来获取关系的重要性。在知识图谱3个基准数据集上的实验结果表明,所提模型可以有效缓解异质结构嵌入常曲率低维空间导致的问题。将所提方法应用于推荐系统的冷启动问题上,相应指标均有一定程度的提高。
Knowledge graphs(KGs)has gradually become valuable asset in the field of AI.However,a major problem is that there are many missing edges in the existing KGs.KGs representation learning can effectively solve this problem.The quality of representation learning depends on how well the geometry of the embedding space matches the structure of the data.Euclidean space has been the main force for embeddings;hyperbolic andspherical spaces gaining popularity due to their ability to better embed new types of structured data.However,most data are highly heterogeneous,the single-space modeling leads to large information distortion.To solve this problem,inspired by MuRP model,mixed-curve space model is proposed to provide representations suitable for heterogeneous structural data.Firstly,the Descartes product of Euclidean hyperbolic and spherical spaces is used to construct mixed space.Then,a graph attention mechanism is designed to obtain the importance of relationship.Experimental results on three KGs benchmark datasets show that the proposed model can effectively alleviate the problems caused by heterostructural embedding in low-dimensional spaces with constant curvature.The proposed method is applied to the cold start problem of recommender system,and the corresponding indicators have been improved to a certain extent.
作者
栗书敬
黄增峰
LI Shujing;HUANG Zengfeng(School of Data Science,Fudan University,Shanghai 200433,China)
出处
《计算机科学》
CSCD
北大核心
2023年第4期172-180,共9页
Computer Science
关键词
表示学习
异构知识图谱
混合曲率空间
链接预测
空间权重
Representation learning
Heterogeneous knowledge graph
Mixed-curve space
Link prediction
Space weight