期刊文献+

Facile synthesis of the Mn_(3)O_(4)polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries 被引量:1

下载PDF
导出
摘要 Because of their large volume variation and inferior electrical conductivity,Mn_(3)O_(4)-based oxide anode materials have short cyclic lives and poor rate capability,which obstructs their development.In this study,we successfully prepared a Mn_(3)O_(4)/N-doped honeycomb carbon composite using a smart and facile synthetic method.The Mn_(3)O_(4)nanopolyhedra are grown on N-doped honeycomb carbon,which evidently mitigates the volume change in the charging and discharging processes but also improves the electrochemical reaction kinetics.More importantly,the Mn-O-C bond in the Mn_(3)O_(4)/N-doped honeycomb carbon composite benefits electrochemical reversibility.These features of the Mn_(3)O_(4)/N-doped honeycomb carbon(NHC)composite are responsible for its superior electrochemical performance.When used for Li-ion batteries,the Mn_(3)O_(4)/N-doped honeycomb carbon anode exhibits a high reversible capacity of 598 mAh·g^(−1)after 350 cycles at 1 A·g^(−1).Even at 2 A·g^(−1),the Mn_(3)O_(4)/NHC anode still delivers a high capacity of 472 mAh·g^(−1).This work provides a new prospect for synthesizing and developing manganese-based oxide materials for energy storage.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1152-1161,共10页 矿物冶金与材料学报(英文版)
基金 financially supported by the Natural Science Foundation of Henan Province of China(No.222300420252) Nanyang Normal University(Nos.2020ZX013 and 2020ZX014).
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部