期刊文献+

基于卷积神经网络的SAR图像去噪新方法

A New SAR Image Denoising Method Based on Convolutional Neural Network
下载PDF
导出
摘要 本文针对SAR图像相干斑噪声提出一种基于卷积神经网络的SAR图像去噪新方法。把带噪SAR图像输入到本文设计的网络中,利用网络的卷积层提取SAR图像的深层特征,池化层进一步处理以使深层特征降维,再通过反卷积层得到与输入图像尺寸大小一样的结果,并将其与原无噪图像对比,以两者的误差作为神经网络优化器的输入,驱动网络更新各层参数使误差函数最小。为了缩短网络训练收敛的时间,引入ReLU激活函数和批归一化处理,经过少次训练后,网络输出的结果就能接近原始SAR图像。实测数据试验结果表明,与传统SAR-BM3D和SAR-NL去噪方法相比,新方法去噪能力更强,图像视觉效果更好。 In this paper,a new SAR image denoising method based on convolutional neural network is proposed to address the coherent speckle noise problem of SAR images.After an SAR image with noise is input to the designed network,the deep features of the SAR image are extracted by the convolutional layer of the network,followed by further processing by the pooling layer to reduce dimensionality of the deep features,and then an image with the same size as the input image is obtained by using the deconvolution layer.The error between the obtained image and the original image without noise is used as the input of the neural network optimizer to drive the network to update the parameters of each layer,minimizing the error function.In order to shorten the time of network training and convergence,the ReLU activation function and batch normalization are introduced.The network output is close to the original SAR images after a few training sessions.A test is carried out using measured data.The test results show that the proposed method has higher denoising capability and better image visual effect than traditional SAR-BM3D and SAR-NL denoising methods.
作者 马智 田斌 MA Zhi;TIAN Bin(Xi’an Electronic Engineering Research Institute,Xi’an 710100)
出处 《火控雷达技术》 2023年第1期15-20,共6页 Fire Control Radar Technology
基金 超级无人车背景预研项目(9950102040202)。
关键词 SAR图像去噪 卷积神经网络 ReLU激活函数 批归一化处理 SAR image denoising convolutional neural network ReLU activation function batch normalization
  • 相关文献

参考文献2

二级参考文献58

  • 1李文博,罗代升.基于Curvelet和Wavelet结合的SAR图像降噪方法[J].四川大学学报(工程科学版),2012,44(S1):145-149. 被引量:5
  • 2Oliver C,Quegan S 著.丁赤飚,陈杰,何国金,等译.合成孔径雷达图像理解[M] .北京:电子工业出版社,2009.
  • 3Goldstein R M, Zebker H A.Satellite radar interferometry :two-dimensional phase unwrapping[J].Radio Science, 1988,23(4):713-720.
  • 4Lee J S,Jurkevich I.Speckle filtering of synthetic aperture radarimages review[J].Remote Sensing Reviews, 1994,8:313-340.
  • 5Rafael C G,Richard E W.数字图像处理学[M].2版.北京:电子工业出版社,2006:183-186.
  • 6Lee J S.Speckle suppression and analysis for synthetic aper-ture radar images[J].Optical Engineering, 1986,25(5) :636-643.
  • 7Kin L, Benoit V,Kacem C.Processing multi-channel radarimages by modified vector sigma filter for edge detectionenhancement[C]//IEEE International Conference on Acous-tics,2006:833-836.
  • 8Kuan D T,Sawchuk A A, Strand T C, et al.Adaptive resto-ration of images with speckle[J].IEEE Trans on ASSP,1987,35(3):373-382.
  • 9Frost V S, Stile J A, Shammugan K S, et al.A model forradar images and its application to adaptive digital filter-ing of multiplicative noise[J].IEEE Trans on PAMI, 1982,4:157-166.
  • 10Baraldi A, Parmigiani F.A refined gamma MAP SAR specklefilter with improved geometrical adaptivity[J].IEEE Transon GRS,1995,33(9):1245-1257.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部