摘要
针对相关向量机核函数存在计算复杂度高、无法体现数据全部特点的问题,提出一种基于多储备池相关向量回声状态机和误差补偿的模型。多储备池具有稀疏性强、内部状态稳定的特点,采用多储备池加权组合代替核函数对数据进行高维映射,并通过稀疏贝叶斯理论求解模型参数。综合考虑多储备池初始化与训练过程的随机性,提取训练产生的误差并结合多种影响因素构建误差补偿环节,对预测结果进行修正。根据某地电网实际负荷数据进行仿真验证,结果表明该模型具有良好的精度与稳定性。
Aimed at the problem that the kernel function of a relevance vector machine has a high computational complexity and cannot reflect all the characteristics of data,an error compensation-multi-reservoir relevance vector echostate machine(EC-MrRVESM)is proposed.The multi-reservoir has characteristics of strong sparsity and stable internal state.The weighted combination of multi-reservoir is used instead of the kernel function to map the data in high dimension,and the model parameters are solved by the sparse Bayesian theory.Considering the randomness of the multi-reservoir initialization and training process,the error generated by training is extracted and an error compensation link is constructed by combing a variety of influencing factors,thus correcting the prediction results.The simulation results of the actual load data of one regional power grid indicate that the proposed model has satisfying accuracy and stability.
作者
邱山
撖奥洋
张智晟
QIU Shan;HAN Aoyang;ZHANG Zhisheng(College of Electrical Engineering,Qingdao University,Qingdao 266071,China;State Grid Qingdao Power Supply Company,Qingdao 266002,China)
出处
《电力系统及其自动化学报》
CSCD
北大核心
2023年第3期53-58,共6页
Proceedings of the CSU-EPSA
基金
国家自然科学基金资助项目(52077108)。
关键词
多储备池
误差补偿
相关向量机
短期负荷预测
multi-reservoir
error compensation
relevance vector machine
short-term load forecasting