期刊文献+

On the rumpling mechanism in nanocrystalline coatings:Improved by reactive magnetron sputtering with oxygen 被引量:1

原文传递
导出
摘要 Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism behind of rumpling remains to be clarified.In the present investigation,we subjected two types of nanocrystalline coating systems to avoid the influence of interdiffusion on rumpling study.One group was an ordinary nanocrystalline coating,and the other group was designed and prepared with trace oxygen by reactive magnetron sputtering.Systematic cyclic oxidation test at 1100°C was also car-ried out.Results show the ordinary nanocrystalline coating oxidized rapidly,which leads to the fast consumption of Al and the acceleration of phase transition in the coating.Meanwhile,severe surface rumpling is observed due to the stress release of nanocrystals through plastic deformation.Besides,the reactive doping of oxygen can significantly reduce the consumption process of Al in nanocrystalline coat-ing.The rumpling is controlled due to the improvement of coefficient of thermal expansion and Young’s modulus of the coating.Thereafter,the cyclic oxidation resistance is improved.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期69-80,共12页 材料科学技术(英文版)
基金 supported by the National Natu-ral Science Foundation of China under Grant(Nos.51671053 and 51801021) the National Key R&D Program of China under Grant(No.2017YFB0306100) the Fundamental Research Funds for the Central Universities(No.N2102015) by the Ministry of Indus-try and Information Technology Project(No.MJ-2017-J-99).
  • 相关文献

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部